Recommendations for the Use of Antiretroviral Drugs in Pregnant Women with HIV Infection and Interventions to Reduce Perinatal HIV Transmission in the United States

Downloaded from https://aidsinfo.nih.gov/guidelines on 10/20/2019

Visit the AIDSinfo website to access the most up-to-date guideline.

Register for e-mail notification of guideline updates at https://aidsinfo.nih.gov/e-news.
Table of Contents

Table 1. Outline of the Guidelines Development Process ... 2
Table 2. Rating Scheme for Recommendations .. 3
Table 3: Drug Interactions Between Antiretroviral Agents and Hormonal Contraceptives 4
Table 4: Clinical Trials of Pre-exposure Prophylaxis ... 12
Table 5. Results of Studies Assessing Association Between Antiretroviral Regimens and Preterm Delivery .. 13
Table 6. What to Start: Initial Combination Regimens for the Antiretroviral-Naive Pregnant Women . 21
Table 7. Situation-Specific Recommendations for Use of Antiretroviral Drugs in Pregnant Women and Nonpregnant Women Who Are Trying to Conceive ... 25
Table 8. Newborn Antiretroviral Management According to Risk of HIV Infection in the Newborn ... 29
Table 9. Newborn Antiretroviral Dosing Recommendations .. 30
Table 10. Antiretroviral Drug Use in Pregnant Women with HIV Infection: Pharmacokinetic and Toxicity Data in Human Pregnancy and Recommendations for Use in Pregnancy ... 33
Supplemental Table 1. Results of Major Studies on Antiretroviral Prophylaxis to Prevent Perinatal HIV Transmission .. 54
Guidelines Development Process

Table 1. Outline of the Guidelines Development Process

<table>
<thead>
<tr>
<th>Topic</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal of the Guidelines</td>
<td>Provide guidance to HIV care practitioners in the United States on the optimal use of antiretroviral (ARV) agents in pregnant women who are living with HIV for treatment of HIV infection and for prevention of perinatal transmission of HIV, as well as management of HIV-exposed infants.</td>
</tr>
<tr>
<td>Panel Members</td>
<td>The Panel is composed of approximately 30 voting members who have expertise in managing the care of pregnant women living with HIV (e.g., training in obstetrics/gynecology, infectious diseases, or women’s health), pharmacology of ARV drugs during pregnancy, and interventions for prevention of perinatal transmission (e.g., specialized training in pediatric HIV infection), as well as community representatives with knowledge of HIV infection in pregnant women and interventions for prevention of perinatal transmission. The U.S. government representatives, appointed by their agencies, include at least one representative from each of the following Department of Health and Human Services agencies: the Centers for Disease Control and Prevention (CDC), the Food and Drug Administration (FDA), the Health Resources and Services Administration, and the National Institutes of Health (NIH). Members who do not represent U.S. government agencies are selected by Panel members after an open announcement to call for nominations. Each member serves on the Panel for a 3-year period, with an option for re-appointment. The Panel may also include liaison members from the Perinatal HIV Hotline, the American Academy of Pediatrics’ Committee on Pediatric AIDS, and the American College of Obstetricians and Gynecologists. A list of all Panel members can be found in the Guidelines Panel Members section.</td>
</tr>
<tr>
<td>Financial Disclosures</td>
<td>All members of the Panel submit an annual written financial disclosure that reports any association with manufacturers of ARV drugs or diagnostics used for management of HIV infections. See Financial Disclosure for a list of the latest disclosures.</td>
</tr>
<tr>
<td>Users of the Guidelines</td>
<td>Providers of care to pregnant women who are living with HIV and to infants who have been exposed to HIV</td>
</tr>
<tr>
<td>Developer</td>
<td>The Panel on Treatment of Pregnant Women with HIV Infection and Prevention of Perinatal Transmission—a working group of the Office of AIDS Research Advisory Council (OARAC)</td>
</tr>
<tr>
<td>Funding Source</td>
<td>Office of AIDS Research, NIH</td>
</tr>
<tr>
<td>Evidence for Recommendations</td>
<td>The recommendations in these guidelines are generally based on studies published in peer-reviewed journals. On some occasions, particularly when new information may affect patient safety, unpublished data that was presented at major conferences or prepared by the FDA and/or manufacturers as warnings to the public may be used as evidence to revise the guidelines.</td>
</tr>
<tr>
<td>Recommendation Grading</td>
<td>See Table 2.</td>
</tr>
<tr>
<td>Method of Synthesizing Data</td>
<td>Each section of the guidelines is assigned to a small group of Panel members with expertise in the area of interest. A structured literature search is conducted by a technical assistance consultant and provided to the Panel working group. The members review and synthesize the available data and propose recommendations to the entire Panel. The Panel discusses all proposals during monthly teleconferences. Proposals are modified based on Panel discussions and then distributed, with ballots, to all Panel members for concurrence and additional comments. If there are substantive comments or votes against approval, the recommended changes and areas of disagreement are brought back to the full Panel (via email or teleconference) for additional review, discussion, and further modification to reach a final version that is acceptable to all Panel members. The recommendations in these final versions represent endorsement from a consensus of members and are included in the guidelines as official Panel recommendations.</td>
</tr>
<tr>
<td>Other Guidelines</td>
<td>These guidelines focus on pregnant women living with HIV and their infants. Other guidelines (all of which are available on the AIDSinfo website) outline the use of ARV agents in nonpregnant adults and adolescents with HIV; use of ARV agents in infants and children with HIV; treatment and prevention of opportunistic infections (OIs) in adults and adolescents with HIV, including pregnant women; treatment and prevention of OIs in children who have been exposed to HIV or who have HIV infection; and treatment of people who experience occupational or nonoccupational exposure to HIV. Preconception management for nonpregnant women of reproductive age is briefly discussed in this document. However, for a more detailed discussion of the issues surrounding the treatment of nonpregnant adults, the Working Group defers to the designated expertise offered by the Panels that have developed those guidelines.</td>
</tr>
</tbody>
</table>
Guidelines Development Process

Table 1. Outline of the Guidelines Development Process, cont’d

<table>
<thead>
<tr>
<th>Topic</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update Plan</td>
<td>The Panel meets monthly by teleconference to review data that may require modification of the guidelines. Updates may be prompted by new drug approvals (or new indications, new dosing formulations, and/or changes in dosing frequency), significant new safety or efficacy data, or other information that may have a significant impact on the clinical care of patients. In the event of significant new data that may affect patient safety, the Panel may issue a warning announcement and accompanying recommendations on the AIDSinfo website until the guidelines can be updated with appropriate changes.</td>
</tr>
<tr>
<td>Public Comments</td>
<td>A 2-week public comment period follows release of the updated guidelines on the AIDSinfo website. The Panel reviews these comments to determine whether additional revisions to the guidelines are indicated. The public may also submit comments to the Panel at any time at contactus@aidsinfo.nih.gov.</td>
</tr>
</tbody>
</table>

Table 2. Rating Scheme for Recommendations

<table>
<thead>
<tr>
<th>Strength of Recommendation</th>
<th>Quality of Evidence for Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Strong recommendation for the statement</td>
<td>I: One or more randomized trials with clinical outcomes and/or validated laboratory endpoints</td>
</tr>
<tr>
<td>B: Moderate recommendation for the statement</td>
<td>II: One or more well-designed, nonrandomized trials or observational cohort studies with long-term clinical outcomes</td>
</tr>
<tr>
<td>C: Optional recommendation for the statement</td>
<td>III: Expert opinion</td>
</tr>
</tbody>
</table>
Note: All recommendations in the following table are based on consensus expert opinion. More details can be found in the CDC’s [U.S. Medical Eligibility Criteria for Contraceptive Use](https://aidsinfo.nih.gov/guidelines), 2016.

Table 3. Drug Interactions Between Antiretroviral Agents and Hormonal Contraceptives

<table>
<thead>
<tr>
<th>ARV Drug</th>
<th>Effect on Contraceptive Drug Levels and Contraceptive’s Effects on ART and HIV</th>
<th>Clinical Studies</th>
<th>Dosing Recommendation/Clinical Comment for COC/P/R</th>
<th>Dosing Recommendation/Clinical Comment for POPs</th>
<th>Dosing Recommendation/Clinical Comment for DMPA</th>
<th>Dosing Recommendation/Clinical Comment for Etonogestrel Implants</th>
<th>Justification/ Evidence for Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNRTIs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COC:</td>
<td>• No effect on EE concentrations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ↓ active metabolites of norgestimate LN AUC ↓ 83%; norelgestromin AUC ↓ 64%31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Etonogestrel (in COC) C$_{24h}$ ↓ 61%37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMPA:</td>
<td>• No effect on DMPA levels28,30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etonogestrel Implant:</td>
<td>• Etonogestrel AUC ↓ 63% to 82%41,46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LN Implant:</td>
<td>• LN AUC ↓ 47%42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LN (emergency contraception) AUC ↓ 58%26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changes in ARV Levels and/or Effects on HIV</td>
<td>COC:</td>
<td>• No effect on EFV concentrations31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• EFV C$_{12h}$ ↓ 22%; was under therapeutic threshold in 3/16 subjects37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMPA:</td>
<td>• No effect on HIV disease progression28,49,54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No effect on EFV concentrations28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COC:</td>
<td>• No difference in pregnancy rates40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pregnancy rate higher (13%) in women using COCs and EFV than COCs alone45,51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Progesterone >3 ng/mL (a surrogate for ovulation) in 3/16 women52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No ovulations31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMPA:</td>
<td>• No increase in pregnancy rates28,49,54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Low progesterone28,30,50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etonogestrel Implant:</td>
<td>• Pregnancy rate higher with EFV compared with no ART, but still lower than other hormonal methods of contraception45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Presumptive ovulation in 5%48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LN Implant:</td>
<td>• 12% pregnancy rate49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 15% pregnancy rate42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pregnancy rate higher with EFV compared with no ART, but still lower than other hormonal methods of contraception45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For COCs, some studies suggest higher pregnancy rate and ovulation rate and decreased progestin levels. EFV may decrease, but clinical significance unclear. For DMPA, evidence does not show effects on pregnancy rate, ovulation, or DMPA levels. Also, no effect on HIV disease progression or EFV levels.

For implants, some studies suggest higher pregnancy rate and decreased hormone levels.
Table 3. Drug Interactions Between Antiretroviral Agents and Hormonal Contraceptives (page 2 of 8)

<table>
<thead>
<tr>
<th>ARV Drug</th>
<th>Effect on Contraceptive Drug Levels and Contraceptive’s Effects on ART and HIV</th>
<th>Clinical Studies</th>
<th>Dosing Recommendation/ Clinical Comment for COC/P/R</th>
<th>Dosing Recommendation/ Clinical Comment for POPs</th>
<th>Dosing Recommendation/ Clinical Comment for DMPA</th>
<th>Justification/ Evidence for Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNRTIs, continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **EFV, continued** | LN Implant:
• No effect on HIV disease progression⁴² | No increase in pregnancy rate⁴⁷ | | | | |
| **ETR** | EE AUC ↑ 22%⁵³
NE:
• No significant effect⁵³ | COC:
• No ovulations⁵³ | No additional contraceptive protection is needed. | No additional contraceptive protection is needed. | No additional contraceptive protection is needed. | For COCs, 1 study found no ovulations and no significant change in progestin levels. No evidence on POPs. |
| **NVP** | EE AUC ↓ 29%,⁵⁴ no change in EE AUC⁵²
NE AUC ↓ 18%,⁵⁴
Etonogestrel (in COC) C_{24h} ↓ 22%,³⁷
DMPA:
• No significant change²⁸
LN Implant:
• LN AUC ↑ 35%⁴²
Changes in ARV Levels and/or Effects on HIV
COC:
• No significant effect on NVP levels^{52,54,56}
DMPA:
• No effect on HIV disease progression^{28,49,50,57}
LN Implant:
• No effect on HIV disease progression^{42,58} | COC:
• No increase in pregnancy rate^{40,47,51,59,60}
• No ovulations^{52,55,60}
DMPA:
• No increase in pregnancy rate^{40,47,50,59}
• No ovulations⁵⁹
Etonogestrel Implant:
• No increase in pregnancy rate⁴⁵
LN Implant:
• No increase in pregnancy rate^{38,42,45,47,56} | No additional contraceptive protection is needed. | No additional contraceptive protection is needed. | No additional contraceptive protection is needed. | For COCs, evidence does not show effects on pregnancy rate or ovulations. Evidence demonstrated small decrease in progestin levels. Also, no effect on NVP levels. |

Recommendations for the Use of Antiretroviral Drugs in Pregnant Women with HIV Infection and Interventions to Reduce Perinatal HIV Transmission in the United States

Downloaded from https://aidsinfo.nih.gov/guidelines on 10/20/2019
Table 3. Drug Interactions Between Antiretroviral Agents and Hormonal Contraceptives (page 3 of 8)

<table>
<thead>
<tr>
<th>ARV Drug</th>
<th>Effect on Contraceptive Drug Levels and Contraceptive’s Effects on ART and HIV</th>
<th>Clinical Studies</th>
<th>Dosing Recommendation/ Clinical Comment for COC/P/R</th>
<th>Dosing Recommendation/ Clinical Comment for POPs</th>
<th>Dosing Recommendation/ Clinical Comment for DMPA<sup>a</sup></th>
<th>Justification/ Evidence for Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNRTIs, continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| RPV | EE AUC ↑ 14%³⁶
NE:
• No significant change³⁹
Changes in ARV Levels and/or Effects on HIV
COC:
• No change in progesterone³⁶ | COC:
No additional contraceptive protection is needed.
NE:
• No change in progesterone³⁶ | No additional contraceptive protection is needed. | No additional contraceptive protection is needed. | No additional contraceptive protection is needed. | For COCs, evidence does not show effects on ovulation or progestin levels. Also, no change in RPV levels. No evidence on POPs. |
| **RTV-Boosted PIs** | | | | | | | |
| ATV/r | EE AUC ↓ 19%⁶¹
Norgestimate AUC ↑ 85%⁶¹
POP:
• NE AUC ↑ 50%⁶² | N/A | No additional contraceptive protection is needed. | No additional contraceptive protection is needed. | No additional contraceptive protection is needed. | For COCs, increase in progestin levels seen in only 1 study. For POPs, increase in progestin levels seen in only 1 study. RTV inhibits CYP3A4, which may increase contraceptive hormone levels. |
| DRV/r | EE AUC ↓ 44%⁶³
NE AUC ↓ 14%⁶³ | N/A | Can consider an alternative method (or a reliable method of barrier contraception) in addition to this method. | Can consider an alternative method (or a reliable method of barrier contraception) in addition to this method. | No additional contraceptive protection is needed. | For COCs, small decrease in progestin levels. No evidence on POPs. |
| FPV/r | EE AUC ↓ 37%⁶⁴
NE AUC ↓ 34%⁶⁴
No change in FPV/r levels⁶⁴ | N/A | Can consider an alternative method (or a reliable method of barrier contraception) in addition to this method. | Can consider an alternative method (or a reliable method of barrier contraception) in addition to this method. | No additional contraceptive protection is needed. | For COCs, decrease in progestin levels. No evidence on POPs. |
<table>
<thead>
<tr>
<th>ARV Drug</th>
<th>Effect on Contraceptive Drug Levels and Contraceptive’s Effects on ART and HIV</th>
<th>Clinical Studies</th>
<th>Dosing Recommendation/ Clinical Comment for COC/P/R</th>
<th>Dosing Recommendation/ Clinical Comment for POPs</th>
<th>Dosing Recommendation/ Clinical Comment for DMPA</th>
<th>Justification/ Evidence for Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTV-Boosted PIs, continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPV/r</td>
<td>EE AUC ↓ 55%<sup>27</sup>
 NE AUC ↓ 17%
 Patch:
 • EE AUC ↓ 45%M
 • Norelgestromin AUC ↑ 83%M
 DMPA:
 • DMFA AUC ↑ 46%M<sup>40</sup>
 Etonogestrel Implant:
 • Etonogestrel AUC ↑ 52%<sup>43</sup>
 Changes in ARV Levels and/or Effects on HIV
 Patch:
 • LPV/r level ↓ 19%M<sup>27</sup>
 DMPA:
 • No effect on HIV disease progression<sup>45</sup>
 • No change in LPV/r levels<sup>30</sup></td>
<td>COC:
 • Increased pregnancy rate, but CIs overlap<sup>45</sup>
 Patch:
 • No ovulations<sup>37</sup>
 DMPA:
 • No pregnancies, no ovulations
 • Increased pregnancy rate, but CIs overlap<sup>45</sup>
 Etonogestrel Implant:
 • No increase in pregnancy rate<sup>45</sup>
 LN Implant:
 • No increase in pregnancy rate<sup>38,45</sup></td>
<td>No additional contraceptive protection is needed.</td>
</tr>
<tr>
<td>SQV/r</td>
<td>↓ EE<sup>50</sup>
 Changes in ARV Levels and/or Effects on HIV
 COC:
 • No change in SQV/r levels<sup>65</sup></td>
<td>N/A</td>
<td>Can consider an alternative method (or a reliable method of barrier contraception) in addition to this method.</td>
<td>Can consider an alternative method (or a reliable method of barrier contraception) in addition to this method.</td>
<td>No additional contraceptive protection is needed.</td>
<td>Can consider an alternative method (or a reliable method of barrier contraception) in addition to this method.</td>
</tr>
</tbody>
</table>
Table 3. Drug Interactions Between Antiretroviral Agents and Hormonal Contraceptives (page 5 of 8)

<table>
<thead>
<tr>
<th>ARV Drug</th>
<th>Effect on Contraceptive Drug Levels and Contraceptive’s Effects on ART and HIV</th>
<th>Clinical Studies</th>
<th>Dosing Recommendation/ Clinical Comment for COC/P/R</th>
<th>Dosing Recommendation/ Clinical Comment POPs</th>
<th>Dosing Recommendation/ Clinical Comment for DMPA</th>
<th>Justification/ Evidence for Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTV-Boosted PIs, continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| TPV/r | EE AUC ↓ 48%⁸⁷
NE:
• No significant change⁸⁷
Changes in ARV Levels and/or Effects on HIV:
• No change in TPV levels⁸⁷ | N/A | Can consider an alternative method (or a reliable method of barrier contraception) in addition to this method. | Can consider an alternative method (or a reliable method of barrier contraception) in addition to this method. | No additional contraceptive protection is needed. | Can consider an alternative method (or a reliable method of barrier contraception) in addition to this method. | For COCs, no significant change in progestin levels but only from product label.
No evidence on POPs.
RTV inhibits CYP3A4, which may increase contraceptive hormone levels. However, some PI/r cause decreases in progestin levels, so there are theoretical concerns about contraceptive effectiveness. |
| **COBI-Boosted PIs** | | | | | | |
| ATV/c | Drospirenone AUC ↑ 2.3-fold; EE AUC ↓ 22%⁹⁸ | N/A | **Contraindicated** with drospirenone-containing hormonal contraceptives due to potential for hyperkalemia.
Consider alternative or additional contraceptive method. | Consider an alternative method, due to safety concerns. | Consider an alternative method, due to safety concerns. | Consider an alternative method, due to safety concerns. | No evidence on POPs. |
Table 3. Drug Interactions Between Antiretroviral Agents and Hormonal Contraceptives (page 6 of 8)

<table>
<thead>
<tr>
<th>ARV Drug</th>
<th>Effect on Contraceptive Drug Levels and Contraceptive’s Effects on ART and HIV</th>
<th>Clinical Studies</th>
<th>Dosing Recommendation/ Clinical Comment for COC/P/R</th>
<th>Dosing Recommendation/ Clinical Comment for POPs</th>
<th>Dosing Recommendation/ Clinical Comment for DMPA<sup>a</sup></th>
<th>Dosing Recommendation/ Clinical Comment for Etonogestrel Implants</th>
<th>Justification/ Evidence for Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>COBI-Boosted PIs, continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRV/c</td>
<td>Drosipreneone AUC ↑ 1.6-fold; EE AUC ↓ 30%<sup>68</sup></td>
<td>N/A</td>
<td>In combination with drosipreneone-containing COCs, clinical monitoring is recommended due to the potential for hyperkalemia. Consider alternative or additional contraceptive method.</td>
<td>Consider an alternative method, due to safety concerns.</td>
<td>Consider an alternative method, due to safety concerns.</td>
<td>Consider an alternative method, due to safety concerns.</td>
<td>No evidence on POPs.</td>
</tr>
<tr>
<td>PIs without RTV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **ATV** | COC:
- EE AUC ↑ 48%⁶⁹
- NE AUC ↑ 110%⁶⁹
APV:
- No change in EE AUC; C_{min} ↑ 32%
- NE AUC ↑ 18%; C_{min} ↑ 45%⁶⁴
FPV with EE/Norethindrone:
- APV AUC ↓ 22% and C_{min} 20%)⁶⁴ | N/A | Prescribe oral contraceptive that contains no more than 30 mcg of EE, or recommend alternative contraceptive method. | No additional contraceptive protection is needed. | No additional contraceptive protection is needed. | No additional contraceptive protection is needed. | For COCs, increased concentrations of estrogen and progestin, but only data available are from the product label. No evidence on POPs. |
| **FPV** | COC:
APV:
- No change in EE AUC; C_{min} ↑ 32%
- NE AUC ↑ 18%; C_{min} ↑ 45%⁶⁴
FPV with EE/Norethindrone:
- APV AUC ↓ 22% and C_{min} 20%)⁶⁴ | N/A | Use alternative contraceptive method. | Can consider an alternative method (or a reliable method of barrier contraception) in addition to this method. | Can consider an alternative method (or a reliable method of barrier contraception) in addition to this method. | Can consider an alternative method (or a reliable method of barrier contraception) in addition to this method. | Use of FPV alone with ethinyl estradiol/ norethindrone may lead to loss of virologic response. No evidence on POPs. |
Table 3. Drug Interactions Between Antiretroviral Agents and Hormonal Contraceptives (page 7 of 8)

<table>
<thead>
<tr>
<th>ARV Drug</th>
<th>Effect on Contraceptive Drug Levels and Contraceptive’s Effects on ART and HIV</th>
<th>Clinical Studies</th>
<th>Dosing Recommendation/Clinical Comment for COC/P/R</th>
<th>Dosing Recommendation/Clinical Comment for POPs</th>
<th>Dosing Recommendation/Clinical Comment for DMPA*</th>
<th>Justification/Evidence for Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIs without RTV, continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDV</td>
<td>COC: • EE AUC ↑ 22% • NE AUC ↑ 26%<sup>50</sup></td>
<td>COC: • No pregnancies among women taking IDV and COCs<sup>51</sup></td>
<td>No additional contraceptive protection is needed.</td>
<td>No additional contraceptive protection is needed.</td>
<td>No additional contraceptive protection is needed.</td>
<td>For COCs, small increases in EE and progestin have been observed, and 1 clinical study did not suggest any efficacy concerns. No evidence on POPs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFV</td>
<td>COC: • EE AUC ↓ 47% • NE AUC ↓ 18%<sup>51</sup></td>
<td>DMPA: • No change<sup>28</sup></td>
<td>Can consider an alternative method (or a reliable method of barrier contraception) in addition to this method.</td>
<td>Can consider an alternative method (or a reliable method of barrier contraception) in addition to this method.</td>
<td>Can consider an alternative method (or a reliable method of barrier contraception) in addition to this method.</td>
<td>For COCs, a small decrease in progestin and a decrease in estrogen have been observed; 1 small clinical study suggests possible higher pregnancy rate with COC and NFV use. DMPA, PK, and clinical data demonstrate no change. However, NFV AUC slightly decreased. No evidence on POPs or implants.</td>
</tr>
<tr>
<td></td>
<td>DMPA: • No pregnancies, no ovulations<sup>28,50</sup></td>
<td>NFV: • AUC ↓ 18%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCR5 Antagonist</td>
<td>MVC</td>
<td>COC: • No significant effect on EE or LN<sup>72</sup></td>
<td>N/A</td>
<td>No additional contraceptive protection is needed.</td>
<td>No additional contraceptive protection is needed.</td>
<td>For COCs, no change in EE or progestin. No clinical data. No evidence on POPs.</td>
</tr>
</tbody>
</table>

Recommendations for the Use of Antiretroviral Drugs in Pregnant Women with HIV Infection and Interventions to Reduce Perinatal HIV Transmission in the United States 10

Downloaded from https://aidsinfo.nih.gov/guidelines on 10/20/2019
Table 3. Drug Interactions Between Antiretroviral Agents and Hormonal Contraceptives (page 8 of 8)

<table>
<thead>
<tr>
<th>ARV Drug</th>
<th>Effect on Contraceptive Drug Levels and Contraceptive’s Effects on ART and HIV</th>
<th>Clinical Studies</th>
<th>Dosing Recommendation/ Clinical Comment for COC/P/R</th>
<th>Dosing Recommendation/ Clinical Comment for POPs</th>
<th>Dosing Recommendation/ Clinical Comment for DMPA*</th>
<th>Dosing Recommendation/ Clinical Comment for Etonogestrel Implants</th>
<th>Justification/ Evidence for Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrase Inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIC/FTC/ TAF</td>
<td>No significant drug interactions with EE or norgestimate.</td>
<td>N/A</td>
<td>No additional contraceptive protection is needed.</td>
<td>No clinical data.</td>
</tr>
</tbody>
</table>
| DTG | **COC:**
• No significant effect on norgestimate or EE
• DTG AUC no change⁴¹ | N/A | No additional contraceptive protection is needed. | COCs, no change in EE or progestin. No clinical data. No evidence on POPs. |
| EVG/c | **EVG/CObI**
COC:
• Norgestimate AUC ↑ 126%
• EE AUC ↓ 25%⁷⁴ | N/A | No additional contraceptive protection is needed. | When administered as the 4-drug regimen EVG/CObI/FTC/TDF, increases in P and small decrease in EE were observed. No clinical data. No evidence on POPs. |
| RAL | **COC:**
• EE no change
• Norgestimate AUC ↑ 14%⁷³ | N/A | No additional contraceptive protection is needed. | For COCs, no change in EE and small increase in progestin. No clinical data. No evidence on POPs. |

* Because the hormonal levels achieved with DMPA are substantially higher than are required for contraception, any small reduction in hormonal level due to ARVs is unlikely to reduce contraceptive effectiveness.

Key to Symbols:
↑ = increase
↓ = decrease

Key to Acronyms:
ART = antiretroviral therapy; ARV = antiretroviral; ATV = atazanavir; ATV/c = atazanavir/cobicistat; ATV/r = atazanavir/ritonavir; AUC = area under the curve; BIC = bictegravir; CD4 = CD4 T lymphocyte; CHC = combination hormonal contraceptives; CI = confidence interval; Cₘᵦᵣᵦᵦᵦ = minimum plasma concentration; COBI = cobicistat; COC/P/R = combined oral contraceptives/patch/ring; CYP = cytochrome P450 3A4; DMPA = depot medroxyprogesterone acetate; DRV/c = darunavir/cobicistat; DRV/r = darunavir/ritonavir; DTG = dolutegravir; EE = ethinyl estradiol; EFV = efavirenz; ETR = etravirine; EVG = elvitegravir; EVG/c = elvitegravir/cobicistat; FPV = fosamprenavir; FPV/r = fosamprenavir/ritonavir; FTC = emtricitabine; IDV = indinavir; LN = levonorgestrel; LPV/r

Recommendations for the Use of Antiretroviral Drugs in Pregnant Women with HIV Infection and Interventions to Reduce Perinatal HIV Transmission in the United States

Downloaded from https://aidsinfo.nih.gov/guidelines on 10/20/2019
Table 3. Drug Interactions Between Antiretroviral Agents and Hormonal Contraceptives

= lopinavir/ritonavir; MVC = maraviroc; NE = norethindrone; NFV = nelfinavir; NNRTI = non-nucleoside reverse transcriptase inhibitor; NVP = nevirapine; P = progesterin; PI = protease inhibitor; PI/r = ritonavir-boosted protease inhibitor; PK = pharmacokinetic; POP = progesterone-only oral contraceptive pills; RAL = raltegravir; RPV = rilpivirine; RTV = ritonavir; SQV/r = saquinavir/ritonavir; TAF = tenofovir alafenamide; TDF = tenofovir disoproxil fumarate; TPV/r = tipranavir/ritonavir

Source: Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents Living with HIV. Department of Health and Human Services. Tables 15a, 15b, and 15d.

Table 4. Clinical Trials of Pre-Exposure Prophylaxis

<table>
<thead>
<tr>
<th>Trial</th>
<th>Study Population</th>
<th>Location</th>
<th>Intervention</th>
<th>Outcome</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDF2</td>
<td>1,219 sexually active adults; 55% male, 45% female; 94% unmarried; approximately 90% aged 21–29 years</td>
<td>Botswana</td>
<td>Daily oral TDF/FTC</td>
<td>63% protection</td>
<td>>30% did not complete study; cannot draw definitive conclusions for women and men separately.</td>
</tr>
<tr>
<td>PIP</td>
<td>4,758 serodiscordant heterosexual couples; 38% HIV-negative female partner, 62% HIV-negative male partner; 98% married; median age 33 years</td>
<td>Botswana, Kenya, Rwanda, South Africa, Tanzania, Uganda, Zambia</td>
<td>Daily oral TDF or TDF/FTC</td>
<td>67% protection with TDF alone; 75% protection with TDF/FTC</td>
<td>Serodiscordant couples may be a distinct, unique population.</td>
</tr>
<tr>
<td>FEM-PrEP</td>
<td>1,951 heterosexual women aged 18–35 years and at high risk of infection</td>
<td>Kenya, South Africa, Tanzania</td>
<td>Daily oral TDF/FTC</td>
<td>Trial discontinued for futility in April 2011</td>
<td>Adherence assessment with monthly clinical samples to measure drug concentration is pending.</td>
</tr>
<tr>
<td>VOICE MTN-003</td>
<td>5,029 heterosexual women aged 18–45 years in areas with a high prevalence of HIV</td>
<td>Uganda, South Africa, Zimbabwe</td>
<td>Daily oral TDF or daily oral TDF/FTC or daily topical TFV gel</td>
<td>No study drug significantly reduced the risk of HIV acquisition. Estimates of effectiveness were <0 for TDF and TDF/FTC daily oral dosing (negative 48.8% and negative 4.2% TDF/FTC, respectively), and reduced risk of HIV infection of 14.7% for TFV gel.</td>
<td>Adherence to study drugs was low; TFV was detected in 30% of the oral TDF arm, 29% in the oral TDF/FTC arm, and 25% in the TFV gel arm.</td>
</tr>
</tbody>
</table>

Key to Acronyms: FTC = emtricitabine; TDF = tenofovir disoproxil fumarate; TFV = tenofovir
Table 5. Results of Studies Assessing the Association Between Antiretroviral Regimens and Preterm Delivery (page 1 of 8)

<table>
<thead>
<tr>
<th>Study Location(s); Dates of Study</th>
<th>Total Number of Pregnancies/Total Number on ARV Drugs</th>
<th>Types of ARV Regimens Compared (Numbers)</th>
<th>Association Noted Between ARV Regimens and Preterm Delivery</th>
<th>Notes</th>
</tr>
</thead>
</table>
| European Collaborative Study and Swiss Mother and Child HIV Cohort Study; 1986–2000 | 3,920/896 | • Mono (573)
• Multi-no PI (215)
• Multi-PI (108) | • YES (compared with no ARV)
• Multi: 1.82 (1.13–2.92)
• Multi-PI: 2.60 (1.43–4.7) | • Increase in PTD if ARV was initiated before pregnancy versus in third trimester. |
| United States; 1990–1998 | 3,266/2,123 | • Mono (1,590)
• Multi (396)
• Multi-PI (137) | • NO (compared with mono)
• Multi: 0.95 (0.60–1.48)
• Multi-PI: 1.45 (0.81–2.50) | • 7 prospective clinical studies. |
| European Collaborative Study; 1986–2004 | 4,372/2,033 | • Mono (704)
• Dual (254)
• Multi (1,075) | • YES (compared with mono/dual)
• Multi in pregnancy: 1.88 (1.34–2.65)
• Multi pre-pregnancy: 2.05 (1.43–2.95) | • N/A |
Table 5. Results of Studies Assessing the Association Between Antiretroviral Regimens and Preterm Delivery (page 2 of 8)

<table>
<thead>
<tr>
<th>Study Location(s); Dates of Study</th>
<th>Total Number of Pregnancies/Total Number on ARV Drugs</th>
<th>Types of ARV Regimens Compared (Numbers)</th>
<th>Association Noted Between ARV Regimens and Preterm Delivery</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States; 1990–2002<sup>41</sup></td>
<td>2,543/Not given</td>
<td>Early (≤25 Weeks): • Mono (621) • ≥2 ARVs without PI or NNRTI (198) • Multi-NNRTI or Multi-PI (357) Late (≥32 Weeks): • Mono (932) • ≥2 ARVs without PI or NNRTI (258) • Multi-NNRTI or Multi-PI (588)</td>
<td>• NO (compared with mono) • No association between any ARV and preterm delivery</td>
<td>• PTD decreased with receipt of any ARV, ART that contained ZDV, and other ARV regimens compared with no ARV.</td>
</tr>
<tr>
<td>United States; 1990–2002<sup>2</sup></td>
<td>1,337/999</td>
<td>• Mono (492) • Multi-no PI (373) • Multi-PI (134)</td>
<td>• YES (compared with Mono and Multi-no PI) • Multi-PI: 1.8 (1.1–3.03)</td>
<td>• Multi-PI reserved for those with advanced disease and those who experienced virologic failure while on other multi-ARV regimens.</td>
</tr>
<tr>
<td>Brazil, Argentina, Mexico, Bahamas; 2002–2005<sup>38</sup></td>
<td>681/681</td>
<td>• Mono/Dual NRTI (94) • Multi-NNRTI (257) • Multi-PI (330)</td>
<td>• NO (compared with Mono/Dual-NRTI) • No association between any ARV regimen and PTD</td>
<td>• All patients were on ARV for ≥28 days during pregnancy. • Pre-eclampsia/eclampsia, cesarean delivery, diabetes, and low BMI were associated with PTD.</td>
</tr>
<tr>
<td>Meta-Analysis, Europe and United States; 1986–2004<sup>4</sup></td>
<td>11,224/Not given</td>
<td>• Multi-no PI (including Dual) or Multi-PI (2,556)</td>
<td>• YES (only comparing Multi-PI with Multi-no PI) • PI vs. Multi-no PI: 1.35 (1.08–1.70)</td>
<td>• 14 studies, 5 in PTD ARV comparison. • No overall increase in PTD with antepartum ARV. • PTD increased in those on ARV pre-pregnancy and in first trimester compared with later use.</td>
</tr>
<tr>
<td>Italy; 2001–2006<sup>6</sup></td>
<td>419/366</td>
<td>• Multi-PI second trimester (97) • Multi-PI third trimester (146)</td>
<td>• YES • Multi-PI second trimester: 2.24 (1.22–4.12) • Multi-PI third trimester: 2.81 (1.46–5.39)</td>
<td>• Multivariate association also with HCV.</td>
</tr>
<tr>
<td>United States; 1989–2004<sup>6</sup></td>
<td>8,793/6,228</td>
<td>• Mono (2,621) • Dual (1,044) • Multi-no PI (1,781) • Multi-PI (782)</td>
<td>• YES (compared with Dual) • Multi-PI: 1.21 (1.04–1.40)</td>
<td>• Lack of antepartum ARV also associated with PTD. • PTD and LBW decreased over time.</td>
</tr>
</tbody>
</table>
Table 5. Results of Studies Assessing the Association Between Antiretroviral Regimens and Preterm Delivery (page 3 of 8)

<table>
<thead>
<tr>
<th>Study Location(s); Dates of Study</th>
<th>Total Number of Pregnancies/Total Number on ARV Drugs</th>
<th>Types of ARV Regimens Compared (Numbers)</th>
<th>Association Noted Between ARV Regimens and Preterm Delivery</th>
<th>Notes</th>
</tr>
</thead>
</table>
| United Kingdom, Ireland; 1990–2005\(^7\) | 5,009/4,445 | • Mono/Dual (1,061)
• Multi-NRTI or Multi-PI (3,384) | • YES (compared with Mono/Dual)
• Multi-PI or Multi-NRTI: 1.51 (1.19–1.93) | • Similar increased risk with Multi-PI or Multi-no PI.
• No association with duration of ARV use. |
| Germany, Austria; 1995–2001\(^8\) | 183/183 | • Mono (77)
• Dual (31)
• Multi-NRTI (54)
• Multi-PI (21) | • YES (compared with Mono)
• Multi-PI: 3.40 (1.13–10.2) | N/A |
| United States; 2002–2007\(^25\) | 777/777 | • Mono (6)
• Dual (11)
• Multi-no PI (202)
• Multi-PI (558) | • NO (compared PI with all non-PI)
• Multi-PI: 1.22 (0.70–2.12) | • All patients started ARV during pregnancy.
• Study analyzed only spontaneous PTD. |
| Swiss Mother and Child HIV Cohort Study; 1985–2007\(^9\) | 1,180/941 | • Mono (94)
• Dual (53)
• Multi-PI or Multi-no PI (409)
• Multi-PI (385) | • YES (compared with no ARV)
• Multi: 2.5 (1.4–4.3) | • No association of Mono/Dual with PTD compared with all non-ARV.
• No confounding by duration of ARV or maternal risk factors. |
| Botswana; 2006–2008\(^10\) | 530/530 | • Multi-NRTI, ABC plus ZDV plus 3TC (263)
• Multi-PI, LPV/r plus ZDV plus 3TC (267) | • YES
• Multi-PI vs. Multi-NRTI: 2.03 (1.26–3.27) | • Secondary analysis of data from randomized, controlled clinical trial of ARV begun at 26–34 weeks for prevention of perinatal transmission.
• All CD4 cell counts >200 cells/mm\(^3\) |
| Botswana; 2007–2010\(^44\) | 4,347/3,659 | • ARV, regimen unspecified (70)
• Mono (2,473)
• Multi (1,116), 91% Multi-NRTI | • NO
• No association between multi-ART and very PTD (<32 weeks’ gestation) | • Observational; multi-ART before conception associated with very SGA and maternal hypertension during pregnancy. |
| Spain; 1986–2010\(^36\) | 519/371 | • Mono/Dual NRTI (73)
• All Multi (298)
• Multi-PI (178) | • NO (compared with No ARV plus Mono/Dual)
• Spontaneous PTD not associated with Multi ARV or Multi-PI before or during pregnancy | • PTD associated with Multi-ARV given in second half of pregnancy and with prior PTD. |
| Botswana; 2009–2011\(^11\) | 9,504/7,915 | • Mono (4,625)
• All Multi (3,290)
• Multi-PI (312) | • YES (Multi-ARV before and during pregnancy compared with Mono): 1.2 (1.1–1.4) and 1.4 (1.2–1.8)
• YES (Multi-PI compared with Multi-no PI before pregnancy): 2.0 (1.1–3.6) | • ART group classified by initiation before and during pregnancy. |
| France, ANRS French Perinatal Cohort; 1990–2009\(^12\) | 8,696/8,491 | • Mono (950)
• Dual (590)
• Multi-PI (2,414) | • YES (Multi compared to Mono): 1.69 (1.36–2.07)
• YES (before conception compared to during pregnancy): 1.31 (1.11–1.55) | • Patients on ART before and during pregnancy had increased rates of PTD. |
Table 5. Results of Studies Assessing the Association Between Antiretroviral Regimens and Preterm Delivery (page 4 of 8)

<table>
<thead>
<tr>
<th>Study Location(s); Dates of Study</th>
<th>Total Number of Pregnancies/Total Number on ARV Drugs</th>
<th>Types of ARV Regimens Compared (Numbers)</th>
<th>Association Noted Between ARV Regimens and Preterm Delivery</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States; 2000–2011<sup>13</sup></td>
<td>183/183</td>
<td>• Multi-PI (183)</td>
<td>• NO (no control group without ART)</td>
<td>• SGA rate: 31.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Rate of PTD: 18.6%</td>
<td>• Patients on NNRTI-based ART less likely to have SGA: 0.28 (0.1–0.75).</td>
</tr>
<tr>
<td>United States; 2007–2010<sup>13</sup></td>
<td>1,869/1,810</td>
<td>• Mono/Dual (138)</td>
<td>• YES (compared with no ARV in first trimester)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multi-NRTI (193)</td>
<td>• Multi-PI in first trimester vs. none in first trimester</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multi-NNRTI (160)</td>
<td>• PTD 1.55 (1.16–2.07); spontaneous PTD 1.59 (1.10–2.30)</td>
<td></td>
</tr>
<tr>
<td>Latin America; 2002–2012<sup>14</sup></td>
<td>1,512/1,446</td>
<td>• No ART or ART <28 days (66)</td>
<td>• YES (when on ARVs at conception): PTD 1.53 (1.11–2.09)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mono/Dual (130)</td>
<td>• ART for treatment rather than prophylaxis was associated with increased rates of LBW (<2,500 g) infants: 1.8 (1.26–2.56).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multi-no PI (409)</td>
<td>• Multi-no PI associated with decreased risk of LBW (0.33 [0.14–0.74]) and stillbirth (0.11 [0.04–0.34]).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multi-PI (907)</td>
<td>• Multi-PI associated with decreased risk of stillbirth: 0.14 (0.05–0.34).</td>
<td></td>
</tr>
<tr>
<td>Uganda; 2009–2012<sup>33</sup></td>
<td>356/356</td>
<td>• Multi-NNRTI, EFV (177)</td>
<td>• NO (no control group without ART)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multi-PI, LPV/r (179)</td>
<td>• Trend in increased incidence of PTD among women starting ART 24–28-week GA was NS: aOR = 1.76 (0.96–3.23).</td>
<td></td>
</tr>
<tr>
<td>Italy; 1997–2013<sup>14</sup></td>
<td>158/158</td>
<td>• Mono/Dual (27)</td>
<td>• NO (no control group without ART)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multi-no PI (17)</td>
<td>• PTD rate was 17% for this cohort.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multi-PI (114)</td>
<td>• Trend towards association of PTD with longer duration of ART: 2.82 (0.35–8.09).</td>
<td></td>
</tr>
<tr>
<td>Canada; 1988–2011<sup>15</sup></td>
<td>589/530</td>
<td>• No ART (59)</td>
<td>• YES (Multi-boosted PI compared to Multi-non-boosted PI): 2.01 (1.02–3.97)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mono (77)</td>
<td>• NO (non-PI regimens compared to Multi-boosted PI): 0.81 (0.4–1.66)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multi-no PI (166)</td>
<td>• Highest risk of PTD was among women not taking ART compared to non-boosted PI group: 2.7 (1.2–6.09).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multi-non-boosted PI (220)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multi-boosted PI with RTV (144)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Results of Studies Assessing the Association Between Antiretroviral Regimens and Preterm Delivery (page 5 of 8)

<table>
<thead>
<tr>
<th>Study Location(s); Dates of Study</th>
<th>Total Number of Pregnancies/Total Number on ARV Drugs</th>
<th>Types of ARV Regimens Compared (Numbers)</th>
<th>Association Noted Between ARV Regimens and Preterm Delivery</th>
<th>Notes</th>
</tr>
</thead>
</table>
| United Kingdom; 2007–2012³¹ | 493/493 | • Multi-PI, LPV/r (306)
• Multi-PI, ATV/r (187) | NO (comparing 2 PI-based regimens): aOR = 1.87 (0.93–3.75) | Rate of PTD was 13% among women who conceived on ART and 14% among women who started ART during pregnancy.
In a multivariate analysis, a history of PTD was associated with recurrent PTD: aOR = 5.23 (1.91–14.34).
Rate of PTD was 13% among women who conceived on ART and 14% among women who started ART during pregnancy.
In a multivariate analysis, a history of PTD was associated with recurrent PTD: aOR = 5.23 (1.91–14.34). |
| Republic of the Congo; 2007–2012³⁰ | 188/188 | • Multi-no PI, EFV (31)
• Multi-no PI, NVP (146) | NO (comparing EFV 13% vs. NVP 10%) | Rate of PTD was 11%, with no difference between study groups.
LBW increased in EFV group (33% vs. 16%, P = 0.04).
Stillbirth rate was 4% (8/188). |
| Tanzania; 2004–2011¹⁶ | 3,314/2,862 | • No ART (452-excluded)
• Mono (1,768)
• Multi (1,094) | YES (Multi before pregnancy vs. Mono): 1.24 (1.05–1.47)
Very PTD, YES (Multi before pregnancy vs. Mono):1.42 (1.02–1.99)
NO (Multi during pregnancy compared to Mono): 0.85 (0.7–1.02) | Rate of PTD was 29%; women who conceived on ART were more likely to have PTD compared to women on ZDV monotherapy.
Pregnancy-induced hypertension associated with PTD: 1.25 (1.03–1.51). |
| 67 Countries and US Territories, APR; 1989–2013⁴⁰ | 14,684/14,684 | • ARV with ZDV (12,780)
• ARV without ZDV (1,904) | NO (any ZDV-ARV vs. non-ZDV ARV exposure): 1.0 (0.9–1.2) | PTD rate was 12%.
LBW rate was 16%; RR of LBW with ZDV ART vs. non-ZDV ART = 1.2 (1.0–1.3), P = 0.02.
Stillbirth rate: 1.5%, RR = 0.8 (0.5–1.1). |
| Texas, United States; 1984–2014³² | 1,004/792 | • No ART (177)
• Mono, Dual, or Multi-no PI (230)
• Multi-PI (597) | NO (no-PI ART vs. PI ART): 0.9 (0.5–1.5) | Rate of PTD: 13% to 21%.
Rate of SGA: 19% to 23%, OR = 1.3 (0.8–1.9). |
Table 5. Results of Studies Assessing the Association Between Antiretroviral Regimens and Preterm Delivery (page 6 of 8)

<table>
<thead>
<tr>
<th>Study Location(s); Dates of Study</th>
<th>Total Number of Pregnancies/Total Number on ARV Drugs</th>
<th>Types of ARV Regimens Compared (Numbers)</th>
<th>Association Noted Between ARV Regimens and Preterm Delivery</th>
<th>Notes</th>
</tr>
</thead>
</table>
| India, Malawi, South Africa, Tanzania, Uganda, Zambia, Zimbabwe, PROMISE Trial; 2011–2014²⁴ | 3,490/3,096 | • Mono (1,386)
• All Multi (2,710)
• Multi-PI with ZDV (1,385)
• Multi-PI with TDF (325) | • YES (Multi ≥14 weeks vs. Mono) | • Rate of PTD: 21% on Multi-PI with ZDV ART compared to ZDV-Mono (P < 0.001).
• Rate of very PTD: 6% in Multi-PI with TDF ART and 3% in Multi-PI with ZDV ART (P = 0.04).
• LBW was more common in Multi-PI with ZDV ART compared to ZDV Mono (23% vs. 12%, P < 0.001) and in Multi-PI with TDF compared to ZDV Mono (17% vs. 9%, P = 0.004). |
| United States and Puerto Rico, SMARTT; 2007–2016¹⁷ | 1,864/1,658 | • Multi (1,658) | • YES: (Multi-PI vs. No ART): 1.59 (1.1–2.3) | • PI-based ART exposure in first trimester was associated with increased risk of spontaneous PTD compared with no first-trimester ART. |
| South Africa; 2011–2014²⁴ | 3,723/3,547 | • Dual (974)
• Multi (2,573) | • NO
• Dual: 0.2 (0.08–0.5)
• Multi: 0.3 (0.1–0.9) | • PTD rate regardless of ART: 22% to 23%.
• LBW rate on ART: 9% to 15%. Risk of LBW: Dual 0.06 (0.02–0.2) and Multi 0.12 (0.04–0.4).
• SGA rate on ART: 7% to 9%. Risk of SGA: Dual 0.37 (0.1 to 1.5) and Multi 0.3 (0.07 to 0.9).
• Stillbirth rate on Dual (1.2%) and Multi (2.2%). Risk of stillbirth: Dual 0.08 (0.04–0.2) and Multi 0.2 (0.1–0.3). |
| Botswana; 2012–2014¹⁸ | 11,932/10,592 | • Multi-PI (398)
• Multi-NNRTI (4,597) | • YES
• Multi-PI: 1.36 (1.06–1.75)
• Multi-NNRTI: 1.14 (1.01–1.29) | • SGA rates were significantly higher in Multi PI ART (27.7% and 20.4%) and NVP-based ART (24.9% and 28.2%) compared to EFV-based ART (16.9%).
• Stillbirth rates were higher in NVP-based ART: 2.31 (1.64–3.26). |
Table 5. Results of Studies Assessing the Association Between Antiretroviral Regimens and Preterm Delivery (page 7 of 8)

<table>
<thead>
<tr>
<th>Study Location(s); Dates of Study</th>
<th>Total Number of Pregnancies/Total Number on ARV Drugs</th>
<th>Types of ARV Regimens Compared (Numbers)</th>
<th>Association Noted Between ARV Regimens and Preterm Delivery</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 Countries, 5 Continents; 2002–2013<sup>26</sup></td>
<td>23,490 (meta-analysis of 10 studies)</td>
<td>• Mono, Dual, or Multi-no PI • Multi-PI</td>
<td>• YES • Multi-PI: 1.3 (1.04–1.6), I² = 47%</td>
<td>• 5 of 10 studies demonstrated increased risk of PTD with an aOR range of 1.2–4.14.</td>
</tr>
<tr>
<td>South Africa; 2011–2014<sup>26</sup></td>
<td>1,461/1,159</td>
<td>• Dual (424) • Multi (735)</td>
<td>• YES • Multi: 1.65 (1.17-2.33) • ART before pregnancy: 1.72 (1.33-3.01)</td>
<td>• PTD rate was 25%. • Similar rates of PTD observed among women on ART before pregnancy and women starting ART during pregnancy.</td>
</tr>
<tr>
<td>Netherlands; 1997–2015<sup>31</sup></td>
<td>2,184/1,392</td>
<td>• Multi (1,392) • PI-based and non-PI based ART</td>
<td>• NO • 1.39 (0.99–1.94); comparing women on ART before pregnancy to those who started ART during pregnancy</td>
<td>• PTD rate was 14.7%; • SGA rate was 23.8% overall; significantly higher in women taking ART before pregnancy (27.3%) vs. those starting ART during pregnancy (21.5%); aOR = 1.35 (1.0–1.9). • PI-based ART before pregnancy associated with SGA: 1.49 (1.1–2.1).</td>
</tr>
<tr>
<td>South Africa, SAPMTCTE; 2012–2013<sup>20</sup></td>
<td>2,599/2,269</td>
<td>• Dual (873) • Multi (1,396)</td>
<td>• YES • 1.2 (1.0–1.5) compared to infants who were not exposed to HIV • 1.7 (1.1–2.5) in infants exposed to ART from conception</td>
<td>• PTD rate was 12.9%; women with HIV who were not on ARVs had higher rates of PTD than women without HIV. • LBW rate was 13.0%; HIV-exposed infants more likely to be LWB: 1.6 (1.3–1.9). • SGA rate was 16.9%; HIV-exposed infants more likely to have SGA: 1.3 (1.1–1.6).</td>
</tr>
<tr>
<td>Multiple Countries; 1993–2014<sup>27</sup></td>
<td>37,877 (meta-analysis of 17 studies)</td>
<td>• Multi with TDF • Other ART without TDF</td>
<td>• NO • RR = 0.9 (0.81–0.99), I² = 59%; women on Multi with TDF had lower rates of PTD compared to women on other ART without TDF</td>
<td>• PTD rate over 4 studies was 20.3%. • Stillbirth rate over 3 studies was 4.4%; stillbirth rate was lower among TDF-exposed patients: 0.6 (0.43–0.84).</td>
</tr>
</tbody>
</table>
Table 5. Results of Studies Assessing the Association Between Antiretroviral Regimens and Preterm Delivery (page 8 of 8)

<table>
<thead>
<tr>
<th>Study Location(s); Dates of Study</th>
<th>Total Number of Pregnancies/Total Number on ARV Drugs</th>
<th>Types of ARV Regimens Compared (Numbers)</th>
<th>Association Noted Between ARV Regimens and Preterm Delivery</th>
<th>Notes</th>
</tr>
</thead>
</table>
| United Kingdom/Ireland; 2007–2015⁵⁵ | 6,073/6,073 | • Multi-PI (4,184)
• Multi-NNRTI (1,889) | • YES
• Multi-PI associated with PTD: 1.56 (1.19-2.04)
• Multi-PI before conception with CD4 count <350 cells/mm³, 1.99 (1.02–3.85) and 1.9 (1.01–3.57) and with CD4 count >350 cells/mm³, 1.61 (1.07–2.43) | • PTD rate was 10.4%.
• SGA rate was 20.4%. |
| South Africa; 2010–2015²³ | 4,435/2,549 | • Multi-NNRTI, EFV plus TDF plus FTC/3TC (1,481)
• Multi-NNRTI, other EFV-based ART (187)
• Multi-NNRTI, NVP-based ART (343)
• ZDV (528) | • NO
• NVP-based ART aOR = 0.66 (0.27–1.63) (NS) and other EFV-based ART (aOR 0.72; 95% CI, 0.24±2.12) vs. EFV plus TDF plus FTC/3TC. | • PTD rate was 10.4%.
• SGA rate was 10.4%.
• LBW rate was 9.6%. |
| North America; 2007–2013¹⁸ | 4,646/1,621 | • Multi-PI, TDF plus FTC plus LPV/r, TDF plus FTC plus ATV/r, ZDV plus 3TC plus LPV/r (1,621) | • YES
• TDF plus FTC plus ATV/r vs. ZDV plus 3TC plus LPV/r: aOR = 0.69 (0.51–0.94) | • PTD rate was 19%.
• LBW rate was 19.6%. |

Note: The data presented in the column Association Noted between ARV Regimens and Preterm Delivery represent the published results of the study in the corresponding row. Depending on the study designs, these are adjusted and unadjusted odds ratios and relative risks.

Key to Acronyms: 3TC = lamivudine; ABC = abacavir; aOR = adjusted odds ratio; ART = antiretroviral therapy; ARV = antiretroviral; ATV/r = atazanavir/ritonavir; BMI = body mass index; CD4 = CD4 T lymphocyte; dual = 2 ARV drugs; EFV = efavirenz; FTC = emtricitabine; GA = gestational age; HCV = hepatitis C virus; LBW = low birth weight; mono = single ARV drug; multi = 3 or more ARV drugs; multi-PI = combination ART with PI; LPV/r = lopinavir/ritonavir; NNRTI = non-nucleoside reverse transcriptase inhibitor; NRTI = nucleoside reverse transcriptase inhibitor; NS = nonsignificant; NVP = nevirapine; OR = odds ratio; PI = protease inhibitor; PROMISE = Promoting Maternal and Infant Survival Everywhere; PTD = preterm delivery; RR = relative risk; RTV = ritonavir; SAPMTCTE = South African Prevention of Mother-to-Child Transmission Evaluation; SGA = small for gestational age; SMARTT = Surveillance Monitoring for ART Toxicities; TDF = tenofovir disoproxil fumarate; ZDV = zidovudine
Recommendations for initial therapy are intended for pregnant women **who have never received ART or ARV prophylaxis** (i.e., women who are ARV-naive) and who have no evidence of significant resistance to regimen components (see Pregnant Women Living with HIV Who Have Never Received Antiretroviral Drugs and Table 7).

The Panel on Treatment of Pregnant Women with HIV Infection and Prevention of Perinatal Transmission (the Panel) recommends that **women who become pregnant while on a stable ART regimen that results in viral suppression remain on that same regimen**, unless they are receiving an ARV drug or ART regimen that is not recommended for use in adults or there are concerns about safety and inferior efficacy during pregnancy (see Table 7 and Pregnant Women Living with HIV Who Are Currently Receiving Antiretroviral Therapy). Women who have previously received ART or ARV drugs for prophylaxis may warrant specific considerations (see Pregnant Women Living with HIV Who Have Previously Received Antiretroviral Treatment or Prophylaxis but Are Not Currently Receiving Any Antiretroviral Medications and Table 7).

Additionally, new data have identified a possible increased risk of NTDs in the infants of women who become pregnant while taking DTG (see table below and Recommendations for Use of Antiretroviral Drugs During Pregnancy).

Regimens are listed alphabetically within each drug class and recommendation category, and the order does not indicate a ranking of preference. In addition, the Panel makes no recommendation of one agent or regimen over another within each category (preferred or alternative).

Note: For more information about the use of specific drugs and dosing in pregnancy, see Table 7, the individual drug sections in Appendix B, and Table 10.

Table 6. What to Start: Initial Combination Regimens for Antiretroviral-Naive Pregnant Women

<table>
<thead>
<tr>
<th>Drug</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred Initial Regimens in Pregnancy:</td>
<td></td>
</tr>
<tr>
<td>• Drugs or drug combinations are designated as preferred for initiating ART in ARV-naive pregnant women when clinical trial data in adults have demonstrated optimal efficacy and durability with acceptable toxicity and ease of use and when pregnancy-specific PK data are available to guide dosing. In addition, drugs or drug combinations must have no established associations with teratogenic effects (from animal and/or human studies), and no clinically significant adverse outcomes for mothers, fetuses, or newborns have been reported.</td>
<td></td>
</tr>
<tr>
<td>Preferred Two-NRTI Backbones</td>
<td></td>
</tr>
<tr>
<td>ABC/3TC</td>
<td>Available as an FDC. Can be administered once daily. ABC should not be used in patients who test positive for HLA-B*5701 because of the risk of a hypersensitivity reaction. ABC/3TC administered with ATV/r or with EFV is not recommended if pretreatment HIV RNA is >100,000 copies/mL.</td>
</tr>
<tr>
<td>TDF/FTC or TDF/3TC</td>
<td>TDF/FTC is available as an FDC. Either coformulated TDF/FTC or TDF with separate 3TC can be administered once daily. TDF has potential renal toxicity; thus, TDF-based, dual-NRTI combinations should be used with caution in patients with renal insufficiency.</td>
</tr>
<tr>
<td>Preferred INSTI Regimens</td>
<td></td>
</tr>
<tr>
<td>DTG/ABC/3TC (FDC) or DTG plus a Preferred Dual-NRTI Backbone (After the First Trimester)*</td>
<td>Should not be initiated during the first trimester (less than 14 weeks [up to 13 6/7 weeks] gestational age by last menstrual period) due to concerns about a possible increased risk of NTDs. No safety problems have been identified when DTG is initiated during pregnancy; however, a possible increased risk of NTDs was observed among infants born to women who conceived while taking DTG. Available as an FDC (coformulated with 3TC and ABC, requiring HLA-B*5701 testing). Administered once daily. Useful when drug interactions with a PI are a concern. In nonpregnant adults, DTG is associated with lower rates of INSTI resistance than RAL; therefore, the use of DTG is suggested for women with acute HIV infection in pregnancy (after the first trimester) and for women who present to care late in pregnancy. There are specific timing and/or fasting recommendations if taken with calcium or iron (e.g., in prenatal vitamins; see Table 10).</td>
</tr>
</tbody>
</table>

* Dolutegravir is not recommended for use in pregnant women during the first trimester (see Interim Panel Recommendations Regarding the Use of Dolutegravir in Pregnancy and Interim Guidance about the Use of Dolutegravir in Pregnancy in Recommendations for Use of Antiretroviral Drugs During Pregnancy).
Table 6. What to Start: Initial Combination Regimens for Antiretroviral-Naive Pregnant Women

<table>
<thead>
<tr>
<th>Drug</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred INSTI Regimens, continued</td>
<td></td>
</tr>
<tr>
<td>RAL plus a Preferred 2-NRTI Backbone</td>
<td>PK data are available for RAL use in pregnancy, and there is increasing experience with use in pregnancy. Associated with rapid viral load reduction (which may be useful for women who present for initial therapy late in pregnancy). Useful when drug interactions with PI regimens are a concern. Twice-daily dosing required. There are specific timing and/or fasting recommendations if taken with calcium or iron (e.g., in prenatal vitamins; see Table 10).</td>
</tr>
<tr>
<td>Preferred PI Regimens</td>
<td></td>
</tr>
<tr>
<td>ATV/r plus a Preferred 2-NRTI Backbone</td>
<td>Once-daily administration. Extensive experience with use in pregnancy. Maternal hyperbilirubinemia; no clinically significant neonatal hyperbilirubinemia or kernicterus reported, but neonatal bilirubin monitoring recommended. Cannot be administered with PPIs. Specific timing recommended for dosing with H2 blockers (see Table 10).</td>
</tr>
<tr>
<td>DRV/r plus a Preferred 2-NRTI Backbone</td>
<td>Better tolerated than LPV/r. Increasing experience with use in pregnancy. Must be used twice daily in pregnancy.</td>
</tr>
<tr>
<td>Alternative Initial Regimens in Pregnancy:</td>
<td></td>
</tr>
<tr>
<td>• These regimens have clinical trial data that demonstrates efficacy in adults and adequate serum drug levels during pregnancy, but 1 or more of the following conditions apply: experience in pregnancy is limited; data are lacking or incomplete on teratogenicity; or regimen is associated with dosing, formulation, toxicity, or interaction issues.</td>
<td></td>
</tr>
<tr>
<td>Alternative 2-NRTI Backbones</td>
<td></td>
</tr>
<tr>
<td>ZDV/3TC</td>
<td>Available as an FDC. Although not recommended for initial therapy in nonpregnant adults, ZDV/3TC is the NRTI combination with most experience for use in pregnancy. It has the disadvantages of requiring twice-daily administration and having an increased potential for hematologic toxicities and other toxicities.</td>
</tr>
<tr>
<td>Alternative PI Regimens</td>
<td></td>
</tr>
<tr>
<td>LPV/r plus a Preferred 2-NRTI Backbone</td>
<td>Abundant experience and established PKs in pregnancy. More nausea than with preferred agents. Twice-daily administration. Dose increase recommended in third trimester (see Table 10). Once-daily LPV/r is not recommended for use in pregnant women.</td>
</tr>
<tr>
<td>Alternative NNRTI Regimens</td>
<td></td>
</tr>
<tr>
<td>EFV/TDF/FTC (FDC) or EFV/TDF/3TC (FDC) or EFV plus a Preferred 2-NRTI Backbone</td>
<td>Birth defects have been seen in primate studies of EFV, but there has been no evidence of an increased risk of birth defects in human studies and extensive experience in pregnancy; cautionary text remains in package insert (see Teratogenicity and Table 10). Preferred regimen in women who require coadministration of drugs with significant interactions with preferred agents, or who need the convenience of a coformulated, single-tablet, once-daily regimen and are not eligible for DTG or RPV. Screening for antenatal and postpartum depression is recommended. Higher rate of adverse events than other preferred drugs.</td>
</tr>
<tr>
<td>RPV/TDF/FTC (FDC) or RPV plus a Preferred 2-NRTI Backbone</td>
<td>RPV is not recommended in patients with pretreatment HIV RNA >100,000 copies/mL or CD4 cell counts <200 cells/mm³. Do not use with PPIs. PK data available for pregnant individuals but relatively little experience with use in pregnancy. Available in coformulated, single-tablet, once-daily regimen. PK data suggest lower drug levels and risk of viral rebound in second and third trimesters; if used, consider monitoring viral load more frequently.</td>
</tr>
<tr>
<td>Insufficient Data in Pregnancy to Recommend for Initial Regimens in ART-Naive Women:</td>
<td></td>
</tr>
<tr>
<td>• These drugs are approved for use in adults but lack adequate pregnancy-specific PK or safety data.</td>
<td></td>
</tr>
<tr>
<td>BIC/TAF/FTC (FDC)</td>
<td>No data on use of BIC in pregnancy. Limited data on use of TAF in pregnancy.</td>
</tr>
<tr>
<td>DOR</td>
<td>No data on the use of DOR in pregnancy.</td>
</tr>
<tr>
<td>IBA</td>
<td>No data on the use of IBA in pregnancy.</td>
</tr>
<tr>
<td>TAF/FTC (FDC) and RPV/TAF/FTC (FDC)</td>
<td>Plasma TAF exposures in pregnant adults are similar to those seen in nonpregnant adults, whether TAF is administered with a boosting agent or not. TAF has been studied in pregnant women, but data are not yet sufficient to recommend initiating TAF in pregnancy.</td>
</tr>
</tbody>
</table>
Table 6. What to Start: Initial Combination Regimens for Antiretroviral-Naive Pregnant Women

<table>
<thead>
<tr>
<th>Drug</th>
<th>Comments</th>
</tr>
</thead>
</table>
| **Not Recommended for Initial ART or Use in Pregnancy:**
 • These drugs and drug combinations are recommended for use in adults but are not recommended for use during pregnancy or during a defined time in pregnancy (e.g., specific trimester[s]) because of concerns about maternal or fetal safety or inferior efficacy, including viral breakthroughs in the second and third trimester (see Table 7 and Table 10).
 Note: When a pregnant woman presents to care while virally suppressed on one of these drugs or drug combinations, providers should consider whether to continue her current regimen or switch to a recommended ART regimen (see Pregnant Women Living with HIV Who Are Currently Receiving Antiretroviral Therapy and Table 7).
| DTG (during the first trimester)\(^4\) | Should not be initiated during the first trimester (less than 14 weeks [up to 13 6/7 weeks] gestational age by last menstrual period) due to concerns about a possible increased risk of NTDs. No safety problems identified when DTG is initiated during pregnancy; however, the possible increased risk of NTDs was observed among infants born to women who conceived while taking DTG (see Preferred INSTI Regimens above for information on the use of DTG after the first trimester). |
| ATV/COBI | Limited data on the use of ATV with COBI in pregnancy. Concerns regarding low levels of COBI in second and third trimesters when used with DRV or EGV, leading to low levels of DRV or EGV and poor virologic suppression. PK data on ATV/COBI are not yet available, but low levels of these drugs are also expected to occur during the second and third trimesters. |
| DRV/COBI (FDC) or DRV/COBI/FTC/TAF (FDC) | Limited data on use of DRV with COBI in pregnancy. Inadequate levels of both DRV and COBI in second and third trimester, as well as viral breakthroughs, have been reported. Insufficient data about the use of TAF in pregnancy (see above). |
| EVG/COBI/FTC/TAF (FDC) | Limited data on use of EVG with COBI and insufficient data on the use of TAF in pregnancy (see above). Inadequate levels of both EVG and COBI in second and third trimester, as well as viral breakthroughs, have been reported. Specific timing and/or fasting recommendations, especially if taken with calcium or iron (e.g., in prenatal vitamins; see Table 10). |
| EVG/COBI/FTC/TDF (FDC) | Limited data on use of EVG with COBI in pregnancy. Inadequate levels of both EVG and COBI in second and third trimester, as well as viral breakthroughs, have been reported. Specific timing and/or fasting recommendations, especially if taken with calcium or iron (e.g., in prenatal vitamins; see Table 10). |

Table 7: Not Recommended for Initial ART in Pregnancy:

<table>
<thead>
<tr>
<th>Drug</th>
<th>Comments</th>
</tr>
</thead>
</table>
| **Not Recommended for Initial ART in Pregnancy:**
 • These drugs are not recommended for use in pregnant women who have never received ART. With the exception of NVP, data about the PKs, safety, and efficacy of these drugs during pregnancy are limited.
 • Some of these drugs are also categorized as not recommended except in special circumstances during pregnancy, because the Panel recognizes that may be circumstances where pregnant women who are ART-experienced may need to initiate or continue these drugs to reach or maintain viral suppression (see Table 7).
| MVC | Not recommended for use in ART-naive populations. MVC requires tropism testing before use. Available PK data suggest that using the standard adult dose is appropriate for pregnant patients, although data about use in pregnancy are limited. |
| ETR | Not recommended for use in ART-naive populations. |
| NVP | Not recommended because of the potential for adverse events, complex lead-in dosing, and low barrier to resistance. NVP should be used with caution when initiating ART in women with CD4 cell counts >250 cells/mm\(^3\). Use NVP and ABC together with caution; both can cause hypersensitivity reactions in the first few weeks after initiation. |
| T-20 | Not recommended for use in ART-naive populations. |

\(^4\) DTG is a preferred INSTI for pregnant women after the first trimester. This classification is based on available PK, safety, and efficacy data. However, because of concerns about congenital anomalies that may have occurred both during and after neural tube closure (which occurs around 4 weeks post-conception and 6 weeks after the last menstrual period), the Panel **does not recommend** use of DTG during the first trimester. The first trimester is less than 14 weeks (up to 13 6/7 weeks) gestational age by last menstrual period. This is intended to be a conservative, interim recommendation and will be revised, if indicated, as additional data become available in 2019. Although DTG is not FDA-approved for use in the first trimester, some Panel members would consider using DTG at 12 weeks gestational age by last menstrual period on an individual patient basis (for more information, see Interim Panel Recommendations Regarding the Use of Dolutegravir in Pregnancy).
Note: The following drugs and drug combinations (that are not listed above) should not be used during pregnancy: if women become pregnant while taking these medications, they should switch to a recommended regimen: d4T, ddl, FPV, FPV/r, IDV, IDV/r, NFV, RTV (as a sole PI), SQV, SQV/r, TPV, TPV/r, DTG/RPV (FDC) as a 2-drug ART regimen, or a three-NRTI ART regimen (e.g., ABC/ZDV/3TC). See Table 10 and What Not to Use in the Adult and Adolescent Antiretroviral Guidelines for individual ARV drugs, ARV combinations, and ART regimens that are not recommended or should not be used in adults.

Key to Acronyms: 3TC = lamivudine; ABC = abacavir; ART = antiretroviral therapy; ARV = antiretroviral; ATV = atazanavir; ATV/r = atazanavir/ritonavir; BIC = bictegravir; CD4 = CD4 T lymphocyte cell; COBI = cobicistat; d4T = stavudine; ddl = didanosine; DOR = doravirine; DRV/r = darunavir/ritonavir; DTG = dolutegravir; EFV = efavirenz; ETR = etravirine; EVG = elvitegravir; FDA = Food and Drug Administration; FDC = fixed-dose combination; FPV = fosamprenavir; FPV/r = fosamprenavir/ritonavir; FTC = emtricitabine; IBA = ibalizumab; IDV = indinavir; IDV/r = indinavir/ritonavir; INSTI = integrase strand transfer inhibitor; LPV/r = lopinavir/ritonavir; MVC = maraviroc; NFV = nelfinavir; NNRTI = non-nucleoside reverse transcriptase inhibitor; NRTI = nucleoside reverse transcriptase inhibitor; NTD = neural tube defect; NVP = nevirapine; PI = protease inhibitor; PK = pharmacokinetic; PPI = proton pump inhibitor; RAL = raltegravir; RPV = rilpivirine; RTV = ritonavir; SQV = saquinavir; SQV/r = saquinavir/ritonavir; T-20 = enfuvirtide; TAF = tenofovir alafenamide; TDF = tenofovir disoproxil fumarate; TPV = tipranavir; TPV/r = tipranavir/ritonavir; ZDV = zidovudine
Table 7. Situation-Specific Recommendations for Use of Antiretroviral Drugs in Pregnant Women and Nonpregnant Women Who Are Trying to Conceive (page 1 of 4)

Note: For information about specific ARV drugs and dosing in pregnancy, see Table 6, Table 10, and the individual drug sections in Appendix B.

<table>
<thead>
<tr>
<th>ART Regimen Component</th>
<th>ART for Pregnant Women Who Have Never Received ARV Drugs and Who Are Initiating ART for the First Time</th>
<th>Continuing ART for Women Who Become Pregnant on an ART Regimen that has been Well Tolerated and Virologically Suppressive<sup>a</sup></th>
<th>ART for Pregnant Women Who Have Received ARV Drugs in the Past and Who Are Restarting ART<sup>b</sup></th>
<th>New ART Regimen for Pregnant Women Whose Current ART is not Well Tolerated and/or is not Resulting in Virologic Suppression<sup>c</sup></th>
<th>ART for Nonpregnant Women Who Are Trying to Conceive<sup>abc</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>NRTIs<sup>d,e</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABC</td>
<td>Preferred</td>
<td>Continue</td>
<td>Preferred</td>
<td>Preferred</td>
<td>Preferred</td>
</tr>
<tr>
<td>FTC</td>
<td>Preferred</td>
<td>Continue</td>
<td>Preferred</td>
<td>Preferred</td>
<td>Preferred</td>
</tr>
<tr>
<td>3TC</td>
<td>Preferred</td>
<td>Continue</td>
<td>Preferred</td>
<td>Preferred</td>
<td>Preferred</td>
</tr>
<tr>
<td>TDF</td>
<td>Preferred</td>
<td>Continue</td>
<td>Preferred</td>
<td>Preferred</td>
<td>Preferred</td>
</tr>
<tr>
<td>ZDV</td>
<td>Alternative</td>
<td>Continue</td>
<td>Alternative</td>
<td>Alternative</td>
<td>Alternative</td>
</tr>
<tr>
<td>TAF</td>
<td>Insufficient data<sup>f</sup></td>
<td>Continue</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
<tr>
<td>INSTIs<sup>**</sup></td>
<td>Used in combination with a dual-NRTI backbone<sup>e</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTG</td>
<td>Not recommended during the first trimester<sup>g</sup></td>
<td>Consider continuation with counseling or switch during the first trimester<sup>g</sup></td>
<td>Not recommended during the first trimester<sup>g</sup></td>
<td>Not recommended during the first trimester<sup>g</sup></td>
<td>Not recommended<sup>g</sup></td>
</tr>
<tr>
<td></td>
<td>Preferred after the first trimester<sup>g</sup></td>
<td>Continue if patient is in the second or third trimester</td>
<td>Preferred after the first trimester<sup>g</sup></td>
<td>Preferred after the first trimester<sup>g</sup></td>
<td></td>
</tr>
<tr>
<td>RAL</td>
<td>Preferred</td>
<td>Continue</td>
<td>Preferred</td>
<td>Preferred</td>
<td>Preferred</td>
</tr>
<tr>
<td>BIC</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
<tr>
<td>EVG/COBI</td>
<td>Not recommended<sup>h</sup></td>
<td>Consider switch, or continue with frequent viral load monitoring<sup>h</sup></td>
<td>Not recommended<sup>h</sup></td>
<td>Not recommended<sup>h</sup></td>
<td>Not recommended<sup>h</sup></td>
</tr>
<tr>
<td>PIs<sup>**</sup></td>
<td>Used in combination with a dual-NRTI backbone<sup>e</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATV/r</td>
<td>Preferred</td>
<td>Continue</td>
<td>Preferred</td>
<td>Preferred</td>
<td>Preferred</td>
</tr>
<tr>
<td>DRV/r</td>
<td>Preferred</td>
<td>Continue</td>
<td>Preferred</td>
<td>Preferred</td>
<td>Preferred</td>
</tr>
<tr>
<td>LPV/r</td>
<td>Alternative</td>
<td>Continue</td>
<td>Alternative</td>
<td>Alternative</td>
<td>Alternative</td>
</tr>
<tr>
<td>ATV/COBI</td>
<td>Not recommended<sup>h</sup></td>
<td>Consider altering the regimen, or continuing the same regimen with frequent viral load monitoring<sup>h</sup></td>
<td>Not recommended<sup>h</sup></td>
<td>Not recommended<sup>h</sup></td>
<td>Not recommended<sup>h</sup></td>
</tr>
<tr>
<td>DRV/COBI</td>
<td>Not recommended<sup>h</sup></td>
<td>Consider altering the regimen, or continuing the same regimen with frequent viral load monitoring<sup>h</sup></td>
<td>Not recommended<sup>h</sup></td>
<td>Not recommended<sup>h</sup></td>
<td>Not recommended<sup>h</sup></td>
</tr>
</tbody>
</table>
ART Regimen Component

Note: ARV drugs and ARV regimens are listed alphabetically within drug classes and recommendation categories.

<table>
<thead>
<tr>
<th>ART Regimen Component</th>
<th>ART for Pregnant Women Who Have Never Received ARV Drugs and Who Are Initiating ART for the First Time</th>
<th>Continuing ART for Women Who Become Pregnant on an ART Regimen that has been Well Tolerated and Virologically Suppressive<sup>a</sup></th>
<th>ART for Pregnant Women Who Have Received ARV Drugs in the Past and Who Are Restarting ART<sup>b</sup></th>
<th>New ART Regimen for Pregnant Women Whose Current ART is not Well Tolerated and/or is not Resulting in Virologic Suppression<sup>b</sup></th>
<th>ART for Nonpregnant Women Who Are Trying to Conceive<sup>abc</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>NNRTIs<sup>e</sup></td>
<td>Used in combination with a dual-NRTI backbone<sup>e</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFV</td>
<td>Alternative</td>
<td>Continue</td>
<td>Alternative</td>
<td>Alternative</td>
<td>Alternative</td>
</tr>
<tr>
<td>RPV</td>
<td>Alternative<sup>1</sup></td>
<td>Continue<sup>1</sup></td>
<td>Alternative<sup>1</sup></td>
<td>Alternative<sup>1</sup></td>
<td>Alternative<sup>1</sup></td>
</tr>
<tr>
<td>DOR</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
<tr>
<td>ETR</td>
<td>Not recommended</td>
<td>Continue</td>
<td>Not recommended, except in special circumstances<sup>1</sup></td>
<td>Not recommended, except in special circumstances<sup>1</sup></td>
<td>Not recommended, except in special circumstances<sup>1</sup></td>
</tr>
<tr>
<td>NVP</td>
<td>Not recommended</td>
<td>Continue</td>
<td>Not recommended, except in special circumstances<sup>1</sup></td>
<td>Not recommended, except in special circumstances<sup>1</sup></td>
<td>Not recommended, except in special circumstances<sup>1</sup></td>
</tr>
<tr>
<td>Entry and Fusion Inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBA</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
<td>Insufficient data</td>
</tr>
<tr>
<td>MVC</td>
<td>Not recommended</td>
<td>Continue</td>
<td>Not recommended, except in special circumstances<sup>1</sup></td>
<td>Not recommended, except in special circumstances<sup>1</sup></td>
<td>Not recommended, except in special circumstances<sup>1</sup></td>
</tr>
<tr>
<td>T-20</td>
<td>Not recommended</td>
<td>Continue</td>
<td>Not recommended, except in special circumstances<sup>1</sup></td>
<td>Not recommended, except in special circumstances<sup>1</sup></td>
<td>Not recommended, except in special circumstances<sup>1</sup></td>
</tr>
<tr>
<td>FDC Regimens<sup>6</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABC/DTG/3TC<sup>6</sup></td>
<td>Not recommended during the first trimester Preferred after the first trimester (DTG<sup>6</sup>)</td>
<td>Consider continuation with counseling or switch during the first trimester Continue if patient is in the second or third trimester (DTG<sup>6</sup>)</td>
<td>Not recommended during the first trimester Preferred after the first trimester (DTG<sup>6</sup>)</td>
<td>Not recommended during the first trimester Preferred after the first trimester (DTG<sup>6</sup>)</td>
<td>Not recommended (DTG<sup>6</sup>)</td>
</tr>
<tr>
<td>EFV/FTC/TDF</td>
<td>Alternative (EFV) Continue</td>
<td>Alternative (EFV)</td>
<td>Alternative (EFV)</td>
<td>Alternative (EFV)</td>
<td>Alternative (EFV)</td>
</tr>
<tr>
<td>EFV/3TC/TDF</td>
<td>Alternative (EFV) Continue</td>
<td>Alternative (EFV)</td>
<td>Alternative (EFV)</td>
<td>Alternative (EFV)</td>
<td>Alternative (EFV)</td>
</tr>
<tr>
<td>BIC/FTC/TAF</td>
<td>Insufficient data (BIC, TAF) Insufficient data (BIC)</td>
<td>Insufficient data (BIC, TAF)</td>
<td>Insufficient data (BIC, TAF)</td>
<td>Insufficient data (BIC, TAF)</td>
<td>Insufficient data (BIC, TAF)</td>
</tr>
</tbody>
</table>

^a The individual drug component that is most responsible for the overall recommendation is indicated in parentheses.

¹ Not recommended, except in special circumstances.

Recommendations for the Use of Antiretroviral Drugs in Pregnant Women with HIV Infection and Interventions to Reduce Perinatal HIV Transmission in the United States

Downloaded from https://aidsinfo.nih.gov/guidelines on 10/20/2019
Table 7. Situation-Specific Recommendations for Use of Antiretroviral Drugs in Pregnant Women and Nonpregnant Women Who Are Trying to Conceive (page 3 of 4)

<table>
<thead>
<tr>
<th>ART Regimen Component</th>
<th>ART for Pregnant Women Who Have Never Received ARV Drugs and Who Are Initiating ART for the First Time</th>
<th>Continuing ART for Women Who Become Pregnant on an ART Regimen that has been Well Tolerated and Virologically Suppressivea</th>
<th>ART for Pregnant Women Who Have Received ARV Drugs in the Past and Who Are Restarting ARTb</th>
<th>New ART Regimen for Pregnant Women Whose Current ART is not Well Tolerated and/or is not Resulting in Virologic Suppressionc</th>
<th>ART for Nonpregnant Women Who Are Trying to Conceivebc</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOR/3TC/TDF</td>
<td>Insufficient data (DOR)</td>
</tr>
<tr>
<td>FTC/RPV/TAF</td>
<td>Insufficient data (TAF)</td>
<td>Continue (RPV, TAF)</td>
<td>Insufficient data (TAF)</td>
<td>Insufficient data (TAF)</td>
<td>Insufficient data (TAF)</td>
</tr>
<tr>
<td>EVG/COBI/FTC/TDF</td>
<td>Not recommended (EVG/COBI)</td>
<td>Consider switch or continue with frequent viral load monitoring (EVG/COBI)</td>
<td>Not recommended (EVG/COBI)</td>
<td>Not recommended (EVG/COBI)</td>
<td>Not recommended (EVG/COBI)</td>
</tr>
<tr>
<td>DRV/COBI/FTC/TAF</td>
<td>Not recommended (DRV/COBI)</td>
<td>Consider switch or continue with frequent viral load monitoring (DRV/COBI)</td>
<td>Not recommended (DRV/COBI)</td>
<td>Not recommended (DRV/COBI)</td>
<td>Not recommended (DRV/COBI)</td>
</tr>
<tr>
<td>DTG/RPV</td>
<td>Not recommended (DTG, RPV)</td>
<td>Not recommended during the first trimester (DTG, RPV)</td>
<td>Not recommended (DTG, RPV)</td>
<td>Not recommended (DTG, RPV)</td>
<td>Not recommended (DTG, RPV)</td>
</tr>
</tbody>
</table>

a When changes in ARV regimens are being considered, women should be given information about the benefits and risks of switching ARV drugs so they can participate in decision making.

b Do not initiate ARV regimens with component that have documented resistance or suspected resistance based on prior ARV exposure.

c This guidance is intended for women who are trying to conceive. These recommendations are not intended for all women living with HIV who might become pregnant.

d ABC/3TC, TDF/FTC, and TDF/3TC are preferred two-NRTI backbones and ZDV/3TC is an alternative two-NRTI backbone for ART regimens.

e When using FDCs, refer to Table 10 and the drug sections in Appendix B for information about the dosing and safety of individual components of the FDC during pregnancy.

f Available data about the use of TAF in pregnancy support continuing it in pregnant women who are virally suppressed, although data are insufficient to recommend it when initiating ART in pregnancy.

g The following are interim recommendations pending additional data: DTG is a preferred INSTI for pregnant women after the first trimester, based on available PK, safety, and efficacy data. However, because of concerns about congenital anomalies that may have occurred during and after neural tube closure (which occurs around 4 weeks post-conception and 6 weeks after the last menstrual period), the Panel does not recommend the use of DTG during the first trimester. The first trimester is less than 14 weeks (up to 13 6/7 weeks) gestational age by last menstrual period. This is intended to be a conservative, interim recommendation and will be revised, if indicated, as additional data become available in 2019. Although DTG is not FDA-approved for use in the first trimester, some Panel members would consider using DTG at 12 weeks gestational age by last menstrual period on an individual patient basis. For women who become pregnant while taking DTG and who present to care during the first trimester, providers should counsel patients about the risk of neural tube defects and the risk of viral rebound (with associated risk for perinatal transmission) if changes are made to the ART regimen. For more information, see Interim Panel Recommendations Regarding the Use of Dolutegravir at the Time of Conception in Preconception Counseling and Care and Interim Panel Recommendations Regarding the Use of Dolutegravir in Pregnancy in Recommendations for the Use of Antiretroviral Drugs During Pregnancy.
3 DRV/COBI, EVG/COBI, and ATV/COBI are not recommended for use in pregnancy due to PK changes that pose a risk for low drug levels and viral rebound in the second and third trimesters. However, in pregnant women who present as virologically suppressed on these regimens, it is appropriate to consider continuing them with increased viral load monitoring. If there are concerns about switching, see Pregnant Women Living with HIV Who Are Currently Receiving Antiretroviral Therapy. Although PK data on ATV/COBI are not available yet, it is anticipated that the data will show pharmacokinetic changes that are similar to those observed with DRV/COBI and EVG/COBI.

Although PK data indicate that RPV plasma concentration is reduced during the second and third trimester, the reduction is less than the reductions seen with EVG/COBI or DRV/COBI. Higher-than-standard doses have not been studied, so there are insufficient data to recommend a dose change in pregnancy. With standard dosing, viral load should be monitored more frequently.

Although these drugs are not recommended for initial treatment in ART-naive pregnant women, there may be special circumstances in which treatment-experienced women may need to continue or initiate ETR, NVP, MVC, and T-20 in order to maintain or achieve viral suppression. There are limited safety and efficacy data about the use of ETR, MVC, and T-20 in pregnancy. NVP is not recommended for ART-naive women because it has a greater potential for adverse events than other NNRTIs, complex lead-in dosing, and low barrier to resistance; however, if a pregnant woman presents to care on a well-tolerated, NVP-containing regimen, it is likely that NVP will be safe and effective during pregnancy. See Table 6 and Nevirapine for more information.

2-drug ART regimens are not recommended for use in pregnancy.

The following drugs (that are not listed above) should not be used in pregnancy: if a woman becomes pregnant while taking these medications, she should switch to a recommended regimen: d4T, ddl, FPV, FPV/r, IDV, IDV/r, NFV, RTV (as a sole PI), SQV, SQV/r, TPV, TPV/r, or a three-NRTI ART regimen (e.g., ABC/ZDV/3TC). See Table 10 and What Not to Use in the Adult and Adolescent Antiretroviral Guidelines for additional information about ARV drugs and ARV combinations that are not recommended for use in adults and refer to the table above and Table 6 for ARV regimens that are recommended for use in pregnancy.

Key to Acronyms: 3TC = lamivudine; ABC = abacavir; ART = antiretroviral therapy; ARV = antiretroviral; ATV = atazanavir; ATV/r = atazanavir/ritonavir; BIC = bictegravir; COBI = cobicistat; d4T = stavudine; ddl = didanosine; DOR = doravirine; DRV = darunavir; DRV/r = darunavir/ritonavir; DTG = dolutegravir; EFV = efavirenz; ETR = etravirine; EVG = elvitegravir; FDA = Food and Drug Administration; FDC = fixed-dose combination; FPV = fosamprenavir; FPV/r = fosamprenavir/ritonavir; FTC = emtricitabine; IBA =ibalizumab; IDV = indinavir; IDV/r = indinavir/ritonavir; INSTI = integrase strand transfer inhibitor; LPV/r = lopinavir/ritonavir; MVC = maraviroc; NFV = nelfinavir; NNRTI = non-nucleoside reverse transcriptase inhibitor; NRTI = nucleoside reverse transcriptase inhibitor; NVP = nevirapine; PI = protease inhibitor; PK = pharmacokinetic; RAL = raltegravir; RPV = rilpivirine; RTV = ritonavir; SQV = saquinavir; SQV/r = saquinavir/ritonavir; T-20 = enfuvirtide; TAF = tenofovir alafenamide; TDF = tenofovir disoproxil fumerate; TPV = tipranavir; TPV/r = tipranavir/ritonavir; ZDV = zidovudine
Table 8. Newborn Antiretroviral Management According to Risk of HIV Infection in the Newborn

Drug selection and dosing considerations are related to the age and gestational age of the newborn. Consultation is available through the National Perinatal HIV Hotline (888-448-8765).

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Neonatal ARV Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Risk of Perinatal HIV Transmission</td>
<td>- Mothers who received ART during pregnancy with sustained viral suppression near delivery and no concerns related to adherence</td>
<td>ZDV for 4 weeks</td>
</tr>
<tr>
<td>Higher Risk of Perinatal HIV Transmission</td>
<td>- Mothers who received neither antepartum nor intrapartum ARV drugs</td>
<td>2-drug ARV prophylaxis (NICHD-HPTN 040/PACTG 1043 regimen) with 6 weeks ZDV and 3 doses of NVP (prophylactic dosage, with doses given within 48 hours of birth, 48 hours after first dose, and 96 hours after second dose) or Empiric HIV therapy using either ZDV, 3TC, and NVP (treatment dosage) or ZDV, 3TC, and RAL administered from birth to age 6 weeks.</td>
</tr>
<tr>
<td></td>
<td>- Mothers who received only intrapartum ARV drugs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Mothers who received antepartum and intrapartum ARV drugs but who have detectable viral load near delivery, particularly if delivery was vaginal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Mothers with acute or primary HIV infection during pregnancy or breastfeeding (in which case, the mother should discontinue breastfeeding)</td>
<td></td>
</tr>
<tr>
<td>Presumed Newborn HIV Exposure</td>
<td>- Mothers with unknown HIV status who test HIV positive at delivery or postpartum or whose newborns have a positive HIV antibody test</td>
<td>ARV management as above (for higher risk of perinatal HIV transmission)</td>
</tr>
<tr>
<td></td>
<td>Infant ARVs should be discontinued immediately if supplemental testing confirms that the mother does not have HIV.</td>
<td></td>
</tr>
<tr>
<td>Newborn with HIV</td>
<td>- Positive newborn HIV virologic test/NAT</td>
<td>3-drug ARV regimen using treatment dosages</td>
</tr>
</tbody>
</table>

* See text for evidence supporting a 2-drug ARV prophylaxis regimen and empiric HIV therapy.

* See the Intrapartum Care section for guidance on indications for scheduled cesarean delivery and intrapartum IV ZDV to reduce the risk of perinatal HIV transmission for mothers with an elevated viral load at delivery.

* Most Panel members would opt to administer empiric HIV therapy to infants whose mothers had acute HIV during pregnancy because of the higher risk for in utero transmission. If acute HIV is diagnosed during breastfeeding, mother should stop breastfeeding.

* The optimal duration of empiric HIV therapy in newborns at higher risk of perinatal HIV transmission is unknown. Some Panel members opt to discontinue NVP, RAL, and/or 3TC when a birth NAT returns negative, while others would continue empiric HIV therapy for infants at highest risk of HIV acquisition for 6 weeks. In all cases, ZDV should be continued for 6 weeks. It is recommended that providers consult with an expert in pediatric HIV infection to determine therapy duration based on case-specific risk factors and interim HIV NAT results.

* Most Panel members do not recommend delaying the initiation of ART pending results of the confirmatory HIV NAT, given low likelihood of a false-positive HIV NAT.

Note: ARV drugs should be initiated as close to the time of birth as possible, preferably within 6 to 12 hours of delivery. See Table 9 for dosing specifics.

Key to Acronyms: 3TC = lamivudine; ART = antiretroviral therapy; ARV = antiretroviral; IV = intravenous; NAT = nucleic acid test; NVP = nevirapine; the Panel = Panel on Treatment of Pregnant Women with HIV Infection and Prevention of Perinatal Transmission; RAL = raltegravir; ZDV = zidovudine
Table 9. Antiretroviral Dosing Recommendations for Newborns

Newborns at Low Risk of Perinatal HIV Transmission

<table>
<thead>
<tr>
<th>Recommended Regimen</th>
<th>Recommended Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ZDV</td>
<td>• ZDV administered for 4 weeks</td>
</tr>
</tbody>
</table>

Newborns at Higher Risk of Perinatal HIV Transmission

<table>
<thead>
<tr>
<th>Recommended Regimen</th>
<th>Recommended Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 2-drug ARV prophylaxis with ZDV and 3 doses of NVP (NICHD-HPTN 040/PACTG 1043 regimen), or</td>
<td>• ZDV administered for 6 weeks; 3 doses of NVP during the first week of life</td>
</tr>
<tr>
<td>• Empiric HIV therapy with ZDV/3TC/NVP, or</td>
<td>• ZDV administered for 6 weeks; 3TC and NVP administered for 2–6 weeks, up to 6 weeks of age³</td>
</tr>
<tr>
<td>• Empiric HIV therapy with ZDV/3TC/RAL</td>
<td>• ZDV administered for 6 weeks; 3TC and RAL administered for 2–6 weeks, up to 6 weeks of age³</td>
</tr>
</tbody>
</table>

Newborns with HIV Infection

<table>
<thead>
<tr>
<th>Recommended Regimen</th>
<th>Recommended Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>• HIV therapy with ZDV/3TC/NVP, or</td>
<td>• Lifelong therapy</td>
</tr>
<tr>
<td>• HIV therapy with ZDV/3TC/RAL</td>
<td>• Lifelong therapy</td>
</tr>
</tbody>
</table>

Weight Band

<table>
<thead>
<tr>
<th>Weight Band (kg)</th>
<th>ZDV 10 mg/mL Oral Syrup Twice Daily</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 to < 3 kg</td>
<td>1 mL</td>
</tr>
<tr>
<td>3 to < 4 kg</td>
<td>1.5 mL</td>
</tr>
<tr>
<td>4 to < 5 kg</td>
<td>2 mL</td>
</tr>
</tbody>
</table>

Simplified Weight-Band Dosing for Newborns

≥35 Weeks Gestation at Birth

<table>
<thead>
<tr>
<th>Birth to Age 2 Weeks:</th>
<th>≥35 Weeks Gestation at Birth</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ZDV 4 mg/kg/dose orally twice daily</td>
<td>Birth–4 Weeks:</td>
</tr>
<tr>
<td>Simplified Weight-Band Dosing for Newborns ≥35 Weeks Gestation at Birth:</td>
<td>≥35 Weeks Gestation at Birth</td>
</tr>
<tr>
<td>Age >4 Weeks:</td>
<td>Birth to Age 2 Weeks:</td>
</tr>
<tr>
<td>• ZDV 12 mg/kg/dose orally twice daily</td>
<td>Age 2 Weeks to 6–8 Weeks:</td>
</tr>
<tr>
<td>Simplified Weight-Band Dosing for Newborns Aged ≥35 Weeks Gestation from Birth to 4 Weeks:</td>
<td>≥30 to <35 Weeks Gestation at Birth</td>
</tr>
<tr>
<td>Age >6–8 Weeks:</td>
<td>Birth to Age 2 Weeks:</td>
</tr>
<tr>
<td>• ZDV 12 mg/kg/dose orally twice daily</td>
<td>Age 2 Weeks to 6–8 Weeks:</td>
</tr>
<tr>
<td>≥30 to <35 Weeks Gestation at Birth</td>
<td>Birth to Age 4 Weeks:</td>
</tr>
<tr>
<td>≥30 to <35 Weeks Gestation at Birth</td>
<td>Birth to Age 4 Weeks:</td>
</tr>
</tbody>
</table>

Notes:

- For newborns unable to tolerate oral agents, the IV dose is 75% of the oral dose while maintaining the same dosing interval.

ZDV

- Note: For newborns unable to tolerate oral agents, the IV dose is 75% of the oral dose while maintaining the same dosing interval.
Table 9. Antiretroviral Dosing Recommendations for Newborns (page 2 of 3)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Low Risk Prophylaxis</th>
<th>Higher Risk Prophylaxis: 2-Drug</th>
<th>Higher Risk Prophylaxis: Empiric and HIV Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥32 Weeks Gestation at Birth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Birth to Age 4 Weeks:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3TC 2 mg/kg/dose orally twice daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Age >4 Weeks:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3TC 4 mg/kg/dose orally twice daily</td>
</tr>
<tr>
<td>3TC</td>
<td>N/A</td>
<td>N/A</td>
<td>≥32 Weeks Gestation at Birth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Birth to Age 4 Weeks:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• NVP in 3 doses given</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1. Within 48 hours of birth,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. 48 hours after the 1st dose, and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. 96 hours after the 2nd dose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Birth Weight 1.5 to 2 kg:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• NVP 8 mg per dose orally. Note: No calculation is required for this dose; this is the actual dose, not a mg/kg dose.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Birth Weight >2 kg:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• NVP 12 mg per dose orally. Note: No calculation is required for this dose; this is the actual dose, not a mg/kg dose.</td>
</tr>
<tr>
<td>NVP</td>
<td>N/A</td>
<td>≥32 Weeks Gestation at Birth:</td>
<td>≥37 Weeks Gestation at Birth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• NVP in 3 doses given</td>
<td>Birth to Age 4 Weeks:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Within 48 hours of birth,</td>
<td>• NVP 6 mg/kg/dose orally twice daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. 48 hours after the 1st dose,</td>
<td>Age >4 Weeks:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and</td>
<td>• NVP 200 mg/m² of BSA/dose orally twice daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. 96 hours after the 2nd dose</td>
<td>Birth to Age 1 Week:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• NVP 4 mg/kg/dose orally twice daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Age 1 to 4 Weeks:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• NVP 6 mg/kg/dose orally twice daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Age >4 Weeks:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• NVP 200 mg/m² of BSA/dose orally twice daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note: NVP dose adjustment at 4 weeks of age is optional for empiric HIV therapy.</td>
</tr>
<tr>
<td>RAL</td>
<td>N/A</td>
<td>N/A</td>
<td>≥37 Weeks Gestation at Birth and Weighing ≥2 kg:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Birth to Age 6 Weeks:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Volume (Dose) of Suspension, RAL 10 mg/mL, to be Administered</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Birth to 1 Week: Once Daily Dosing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 to 4 Weeks: Twice Daily Dosing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 mL (10 mg) twice daily</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 to <4 kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 to <6 kg</td>
</tr>
</tbody>
</table>

Note: If the mother has taken RAL 2–24 hours prior to delivery, the neonate’s first dose of RAL should be delayed until 24–48 hours after birth; additional ARVs should be started as soon as possible.

The optimal duration of empiric HIV therapy in newborns at higher risk of perinatal HIV transmission is unknown. Some Panel members opt to discontinue NVP, RAL, and/or 3TC when birth NAT returns negative, while others would continue empiric HIV therapy for infants at the highest risk of HIV acquisition for 6 weeks. In all cases in which the newborn is at higher risk of HIV acquisition, ZDV should be continued for 6 weeks. Consultation with an expert in pediatric HIV to select a therapy duration based on case-specific risk factors and interim HIV NAT results is recommended.
Table 9. Antiretroviral Dosing Recommendations for Newborns (page 3 of 3)

1 Investigational NVP treatment dose recommended by the Panel; FDA has not approved a dose of NVP for infants <1 month of age.
2 RAL dosing is increased at 1 and 4 weeks of age because metabolism by UGT1A1 is low at birth and increases rapidly during the next 4 to 6 weeks of life. No dosing information is available for preterm or low birthweight infants.

Key to Acronyms: 3TC = lamivudine; ARV = antiretroviral; BSA = body surface area; FDA = Food and Drug Administration; IV = intravenous; N/A = no recommendation; NAT = nucleic acid test; NVP = nevirapine; the Panel = the Panel on Treatment of Pregnant Women with HIV Infection and Prevention of Perinatal Transmission; RAL = raltegravir; UGT1A1 = uridine diphosphate glucotransferase; ZDV = zidovudine
Table 10. Antiretroviral Drug Use in Pregnant Women with HIV: Pharmacokinetic and Toxicity Data in Human Pregnancy and Recommendations for Use in Pregnancy

<table>
<thead>
<tr>
<th>Generic Name (Abbreviation)</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
<th>Last Reviewed</th>
</tr>
</thead>
</table>

NRTIs

NRTIs are recommended for use as part of combination regimens, usually including 2 NRTIs with either an NNRTI or 1 or more PIs. Use of single or dual NRTIs alone is not recommended for treatment of HIV infection. See text for discussion of potential maternal and infant mitochondrial toxicity.

<table>
<thead>
<tr>
<th>Abacavir (ABC)</th>
<th>ABC (Ziagen)<sup>d</sup></th>
<th>Standard Adult Doses</th>
<th>High placental transfer to fetus.<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tablet:</td>
<td>ABC 300 mg twice daily or ABC 600 mg once daily, without regard to food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solution:</td>
<td>ABC/3TC (Epzicom):<sup>d</sup></td>
<td>1 tablet once daily without regard to food</td>
<td></td>
</tr>
<tr>
<td>ABG/3TC (Epzicom):</td>
<td>ABC 600 mg plus 3TC 300 mg tablet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABC/DTG/3TC (Triumeq):</td>
<td>ABC 600 mg plus 3TC 300 mg plus DTG 50 mg tablet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABC/3TC/ZDV (Trizivir):</td>
<td>ABC 300 mg plus 3TC 150 mg plus ZDV 300 mg tablet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Generic available for some formulations.

<table>
<thead>
<tr>
<th>Didanosine (ddI)</th>
<th>ddI (Videx)</th>
<th>Standard Adult Doses</th>
<th>ddl is not recommended for pregnant women.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffered Tablets (Non-EC):</td>
<td>ddI 400 mg once daily</td>
<td>Body Weight ≥60 kg: ddI 400 mg once daily</td>
<td></td>
</tr>
<tr>
<td>Solution:</td>
<td>ddI 250 mg once daily; take 1/2 hour before or 2 hours after a meal.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body Weight <60 kg:</td>
<td>ddI 250 mg once daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With TDF:</td>
<td>ddI 250 mg once daily</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Preferred dosing with oral solution is twice daily (total daily dose divided into 2 doses). Take 1/2 hour before or 2 hours after a meal.

Dosing in Pregnancy: No change in dose indicated.

Appendix B: Safety and Toxicity of Individual Antiretroviral Agents in Pregnancy

Generic Name (Abbreviation) | Formulation | Dosing Recommendations | Use in Pregnancy | Last Reviewed

Abacavir (ABC) | Zidagen | Standard Adult Doses | High placental transfer to fetus.^b | December 7, 2018

Note: When using FDCs, refer to other sections in Appendix B and Table 10 for information about the dosing and safety of individual drug components of the FDC during pregnancy.
<table>
<thead>
<tr>
<th>Generic Name (Abbreviation)</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
<th>Last Reviewed</th>
</tr>
</thead>
</table>
| Didanosine, continued | PK in Pregnancy:
• PK is not significantly altered in pregnancy. | High placental transfer to fetus.
No evidence of human teratogenicity (can rule out 1.5-fold increase in overall birth defects).
If patient is HBV-coinfected, it is possible that a HBV flare may occur if the drug is stopped; see HIV/Hepatitis B Virus Coinfection. | December 7, 2018 |
Capsule:
• 200 mg
Oral Solution:
• 10 mg/mL
FTC/EFV/TDF (Atripla):
• FTC 200 mg plus EFV 600 mg plus TDF 300 mg tablet
FTC/BIC/TAF (Biktarvy):
• FTC 200 mg plus BIC 50 mg plus TAF 25 mg tablet
FTC/RPV/TDF (Complera):
• FTC 200 mg plus RPV 25 mg plus TDF 300 mg tablet
FTC/TAF (Descovy):
• FTC 200 mg plus TAF 25 mg tablet
FTC/EVG/COBI/TAF (Genvoya):
• FTC 200 mg plus EVG 150 mg plus COBI 150 mg plus TAF 10 mg tablet
FTC/DRV/COBI/TAF (Symtuza):
• FTC 200 mg plus DRV 800 mg plus COBI 150 mg plus TDF 300 mg tablet
FTC/TDF (Truvada):
• FTC 200 mg plus TDF 300 mg tablet
FTC/EVG/COBI/TDF (Stribild):
• FTC 200 mg plus EVG 150 mg plus COBI 150 mg plus TDF 300 mg tablet
FTC/RPV/TAF (Odefsey):
• FTC 200 mg plus RPV 25 mg plus TDF 300 mg tablet
FTC/DRV/COBI/TAF (Symtuza):
• FTC 200 mg plus DRV 800 mg plus COBI 150 mg plus TDF 300 mg tablet
FTC/TDF (Truvada):
• FTC 200 mg plus TDF 300 mg tablet
FTC/EVG/COBI/TDF (Stribild):
• FTC 200 mg plus EVG 150 mg plus COBI 150 mg plus TDF 300 mg tablet
FTC/RPV/TAF (Odefsey):
• FTC 200 mg plus RPV 25 mg plus TDF 300 mg tablet
FTC/TDF (Truvada):
• FTC 200 mg plus TDF 300 mg tablet | Standard Adult Doses
FTC (Emtriva)
Capsule:
• EVG 200 mg once daily without regard to food
Oral Solution:
• EVG 240 mg (24 mL) once daily without regard to food
FTC/EFV/TDF (Atripla):
• 1 tablet once daily at or before bedtime
Take on an empty stomach to reduce side effects.
FFTC/BIC/TAF (Biktarvy):
• 1 tablet once daily with or without food
FTC/RPV/TDF (Complera):
• 1 tablet once daily with food
FTC/TAF (Descovy):
• 1 tablet once daily with or without food
FTC/EVG/COBI/TAF (Genvoya):
• 1 tablet once daily with food
FTC/RPV/TAF (Odefsey):
• 1 tablet once daily with food
FTC/EVG/COBI/TDF (Stribild):
• 1 tablet once daily with food
FTC/DRV/COBI/TAF (Symtuza):
• 1 tablet once daily with food
FTC/TDF (Truvada):
• 1 tablet once daily without regard to food
Dosing in Pregnancy:
No change in FTC dose indicated.
PK in Pregnancy:
• PK of FTC is not significantly altered in pregnancy.
For guidance about use of combination products in pregnancy, please see the specific sections on other components (i.e., TDF, TAF, EFV, RPV, DRV, EVG, BIC, COBI) | |

Recommendations for the Use of Antiretroviral Drugs in Pregnant Women with HIV Infection and Interventions to Reduce Perinatal HIV Transmission in the United States

Downloaded from https://aidsinfo.nih.gov/guidelines on 10/20/2019
Table 10. Antiretroviral Drug Use in Pregnant HIV-Infected Women: Pharmacokinetic and Toxicity Data in Human Pregnancy and Recommendations for Use in Pregnancya (page 3 of 21)

<table>
<thead>
<tr>
<th>Generic Name (Abbreviation)</th>
<th>Trade Name</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
<th>Last Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamivudine (3TC) (3TC/TDF)</td>
<td>Epivir</td>
<td>3TC (Epivir)4 Tablets:</td>
<td>Standard Adult Doses 3TC (Epivir): 3TC 150 mg twice daily or 300 mg once daily, without regard to food</td>
<td>High placental transfer to fetus.6 No evidence of human teratogenicity (can rule out 1.5-fold increase in overall birth defects). If patient has HIV/HBV coinfection, it is possible that an HBV flare may occur if the drug is stopped: see HIV/Hepatitis B Virus Coinfection.</td>
<td>December 7, 2018</td>
</tr>
<tr>
<td>Cimduo (3TC/ZDV) (3TC/DOR/TDF)</td>
<td>Combivir</td>
<td>3TC/TDF (Cimduo): 3TC 300 mg plus TDF 300 mg tablet</td>
<td>3TC/TDF (Cimduo): 1 tablet once daily without regard to food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delstrigo (3TC/ABC) (3TC/EFV/TDF)</td>
<td>Epzicom</td>
<td>3TC 150 mg plus ZDV 300 mg tablet</td>
<td>3TC/ZDV (Combivir): 1 tablet twice daily without regard to food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symfi (3TC/DOR/TDF) (3TC/ABC/DTG)</td>
<td>Symfi</td>
<td>3TC/DOR/TDF (Delstrigo): 3TC 300 mg plus DOR 100 mg plus TDF 300 mg tablet</td>
<td>3TC/DOR/TDF (Delstrigo): 1 tablet once daily without regard to food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temixys (3TC/ABC/ZDV) (3TC/ABC/DTG)</td>
<td>Triumeq</td>
<td>3TC/ABC (Epzicom): 3TC 300 mg plus ABC 600 mg tablet</td>
<td>3TC/ABC (Epzicom): 1 tablet once daily without regard to food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trizivir (3TC/EFV/TDF) (3TC/ABC/ZDV)</td>
<td>Trizivir</td>
<td>3TC/ABC (Epzicom): 3TC 300 mg plus ABC 600 mg tablet</td>
<td>3TC/ABC (Epzicom): 1 tablet once daily without regard to food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: Generic available for some formulations</td>
<td></td>
<td></td>
<td>PK in Pregnancy: PK not significantly altered in pregnancy. Dosing in Pregnancy: No change in dose indicated. For guidance about use of combination products in pregnancy, please see the specific sections on other components (i.e., ABC, DOR, DTG, EFV, TDF, ZDV);</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 3TC products developed specifically for treatment of HBV (e.g., Epivir-HBV) contain a lower dose of 3TC that is not appropriate for treatment of HIV.
Table 10. Antiretroviral Drug Use in Pregnant HIV-Infected Women: Pharmacokinetic and Toxicity Data in Human Pregnancy and Recommendations for Use in Pregnancy

<table>
<thead>
<tr>
<th>Generic Name (Abbreviation) Trade Name</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
<th>Last Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stavudine (d4T) Zerit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: Generic products are available for all formulations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d4T (Zerit) Capsules:</td>
<td></td>
<td>Standard Adult Doses*</td>
<td>d4T is not recommended for pregnant women.</td>
<td>December 7, 2018</td>
</tr>
<tr>
<td>• 15 mg</td>
<td></td>
<td>Body Weight ≥60 kg:</td>
<td>High placental transfer.*</td>
<td></td>
</tr>
<tr>
<td>• 20 mg</td>
<td></td>
<td>• 40 mg twice daily without regard to meals</td>
<td>No evidence of human teratogenicity (can rule out 2-fold increase in overall birth defects).</td>
<td></td>
</tr>
<tr>
<td>• 30 mg</td>
<td></td>
<td>Body Weight <60 kg:</td>
<td>Lactic acidosis, sometimes fatal, has been reported in pregnant women receiving ddi and d4T together.</td>
<td></td>
</tr>
<tr>
<td>• 40 mg</td>
<td></td>
<td>• 30 mg twice daily without regard to meals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral Solution:</td>
<td></td>
<td>Dosing in Pregnancy:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 1 mg/mL following reconstitution</td>
<td></td>
<td>• No change in dose indicated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: Extended-release capsule formulation (Zerit XR) has been discontinued by the manufacturer.</td>
<td></td>
<td>PK in Pregnancy:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PK not significantly altered in pregnancy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenofovir Alafenamide (TAF) Vemlidy</td>
<td></td>
<td></td>
<td></td>
<td>December 7, 2018</td>
</tr>
<tr>
<td>[TAF/BIC/FTC] Biktarvy</td>
<td></td>
<td>Standard Adult Dose</td>
<td>Low placental transfer to fetus.*</td>
<td></td>
</tr>
<tr>
<td>[TAF/EVG/COBI/FTC] Genvoya</td>
<td></td>
<td>TAF/BIC/FTC (Biktarvy):</td>
<td>Renal function should be monitored because of potential for renal toxicity.</td>
<td></td>
</tr>
<tr>
<td>[TAF/FTC/RPV] Odefsey</td>
<td></td>
<td>TAF/FTC (Descovy):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1 tablet once daily with or without food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TAF/DRV/COBI/FTC] Symtuza</td>
<td></td>
<td>TAF/EVG/COBI/FTC (Genvoya):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: Generic available for some formulations.</td>
<td></td>
<td>TAF/FTC/RPV (Odefsey):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1 tablet once daily with food</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TAF/DRV/COBI/FTC (Symtuza):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1 tablet once daily with food</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Standard Adult Doses:

- **Body Weight ≥60 kg:** 40 mg twice daily without regard to meals
- **Body Weight <60 kg:** 30 mg twice daily without regard to meals

*Note:

- Insufficient data to assess for teratogenicity in humans. No evidence of teratogenicity in rats.
- Renal function should be monitored because of potential for renal toxicity.
Table 10. Antiretroviral Drug Use in Pregnant HIV-Infected Women: Pharmacokinetic and Toxicity Data in Human Pregnancy and Recommendations for Use in Pregnancy

<table>
<thead>
<tr>
<th>Generic Name (Abbreviation) and Trade Name</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
<th>Last Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenofovir Alafenamide, continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenofovir Disoproxil Fumarate (TDF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viread (TDF/3TC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atripla (TDF/EFV/FTC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cimduo (TDF/3TC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complera (TDF/FTC/RPV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delstrigo (TDF/EVG/COBI/FTC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symfi (TDF/EFV/3TC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symfi Lo (TDF/3TC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temixys (TDF/FTC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truvada (TDF/3TC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Generic available for some formulations

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Dosing in Pregnancy:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• No change in dose indicated.</td>
</tr>
<tr>
<td></td>
<td>• For guidance about use of combination products in pregnancy, please see the specific sections on other components (i.e., BIC, COBI, DRV, EVG, FTC, RPV).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Standard Adult Doses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TDF (Viread) Tablet:</td>
</tr>
<tr>
<td></td>
<td>• 300 mg</td>
</tr>
<tr>
<td></td>
<td>Powder:</td>
</tr>
<tr>
<td></td>
<td>• 40 mg/1 g oral powder</td>
</tr>
<tr>
<td></td>
<td>TDF/EFV/FTC (Atripla):</td>
</tr>
<tr>
<td></td>
<td>• TDF 300 mg plus EFV 600 mg plus FTC 200 mg tablet</td>
</tr>
<tr>
<td></td>
<td>TDF/3TC (Cimduo):</td>
</tr>
<tr>
<td></td>
<td>• TDF 300 mg plus 3TC 300 mg tablet</td>
</tr>
<tr>
<td></td>
<td>TDF/FTC/RPV (Complera):</td>
</tr>
<tr>
<td></td>
<td>• TDF 300 mg plus FTC 200 mg plus RPV 25 mg tablet</td>
</tr>
<tr>
<td></td>
<td>TDF/DOR/3TC (Delstrigo):</td>
</tr>
<tr>
<td></td>
<td>• TDF 300 mg plus DOR 100 mg plus 3TC 300 mg tablet</td>
</tr>
<tr>
<td></td>
<td>TDF/EVG/COBI/FTC (Stribild):</td>
</tr>
<tr>
<td></td>
<td>• TDF 300 mg plus EVG 150 mg plus COBI 150 mg plus FTC 200 mg tablet</td>
</tr>
<tr>
<td></td>
<td>TDF/EFV/3TC (Symfi):</td>
</tr>
<tr>
<td></td>
<td>• TDF 300 mg plus EFV 600 mg plus 3TC 300 mg tablet</td>
</tr>
<tr>
<td></td>
<td>TDF/EFV/3TC (Symfi Lo):</td>
</tr>
<tr>
<td></td>
<td>• TDF 300 mg plus EFV 400 mg plus 3TC 300 mg tablet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Use in Pregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High placental transfer to fetus.</td>
</tr>
<tr>
<td></td>
<td>No evidence of human teratogenicity (can rule out 1.5-fold increase in overall birth defects).</td>
</tr>
<tr>
<td></td>
<td>Studies in monkeys (at doses approximately 2-fold higher than those for human therapeutic use) show decreased fetal growth and reduction in fetal bone porosity within 2 months of starting maternal therapy. Human studies demonstrate no consistent link to low birth weight, but data are conflicting about potential effects on growth outcomes later in infancy.</td>
</tr>
<tr>
<td></td>
<td>If patient is HBV coinfected, it is possible that an HBV flare may occur if TDF is stopped; see HIV/Hepatitis B Virus Coinfection.</td>
</tr>
<tr>
<td></td>
<td>Renal function should be monitored because of potential for renal toxicity.</td>
</tr>
</tbody>
</table>

December 7, 2018
Table 10. Antiretroviral Drug Use in Pregnant HIV-Infected Women: Pharmacokinetic and Toxicity Data in Human Pregnancy and Recommendations for Use in Pregnancy

<table>
<thead>
<tr>
<th>Generic Name (Abbreviation)</th>
<th>Trade Name</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenofovir Disoproxil Fumarate, continued</td>
<td>TDF/3TC (Temixys):</td>
<td>• TDF 300 mg plus 3TC 300 mg tablet</td>
<td>TDF/FTC (Truvada): • 1 tablet once daily without regard to food</td>
<td>PK in Pregnancy: • AUC is lower in third trimester than postpartum, but trough levels are adequate. Dosing in Pregnancy: • No change in dose is indicated. For guidance about use of combination products in pregnancy, please see the specific sections on other components (i.e., 3TC, COBI, DOR, EFV, EVG, FTC, RPV)</td>
</tr>
<tr>
<td>Zidovudine (ZDV)</td>
<td>Retrovir (ZDV/3TC) Combivir (ZDV/ABC/3TC) Trizivir</td>
<td>ZDV (Retrovir) Capsule: • 100 mg Tablet: • 300 mg Oral Solution: • 10 mg/mL Intravenous Solution: • 10 mg/mL ZDV/3TC (Combivir): • ZDV 300 mg plus 3TC 150 mg tablet ZDV/ABC/3TC (Trizivir): • ZDV 300 mg plus 3TC 150 mg plus ABC 300 mg tablet</td>
<td>Standard Adult Dose ZDV (Retrovir): • ZDV 300 mg BID or ZDV 200 mg TID without regard to food Active Labor: • ZDV 2 mg/kg IV loading dose, followed by ZDV 1 mg/kg/hour continuous infusion from beginning of active labor until delivery Combivir: • 1 tablet twice daily without regard to food Trizivir: • 1 tablet twice daily without regard to food Dosing in Pregnancy: • No change in dose is indicated. PK in Pregnancy: • PK is not significantly altered in pregnancy. For guidance about use of combination products in pregnancy, please see the specific sections on other components (i.e., ABC, 3TC)</td>
<td>High placental transfer to fetus. No evidence of human teratogenicity (can rule out 1.5-fold increase in overall birth defects).</td>
</tr>
</tbody>
</table>
Table 10. Antiretroviral Drug Use in Pregnant HIV-Infected Women: Pharmacokinetic and Toxicity Data in Human Pregnancy and Recommendations for Use in Pregnancy\(^a\) (page 7 of 21)

<table>
<thead>
<tr>
<th>Generic Name (Abbreviation) Trade Name</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
<th>Last Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNRTI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNRTIs are recommended for use in combination regimens with 2 NRTI drugs. Hypersensitivity reactions, including hepatic toxicity and rash, more common in women; unclear if increased in pregnancy.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doravirine (DOR) Pifeltro (DOR/3TC/TDF) Delstrigo</td>
<td>Doravirine (Pifeltro): • 100 mg tablet</td>
<td>Standard Adult Dose Doravirine (Pifeltro): • 100 mg once daily with or without food</td>
<td>No human data are available on placental transfer of Doravirine, but animal studies suggest that Doravirine crosses the placenta. Insufficient data to assess for teratogenicity in humans. No evidence of teratogenicity in rats or rabbits.</td>
<td>December 7, 2018</td>
</tr>
<tr>
<td></td>
<td>Doravirine/3TC/TDF (Delstrigo): • Doravirine 100 mg plus 3TC 300 mg plus TDF 300 mg tablet</td>
<td>Doravirine/3TC/TDF (Delstrigo): • 1 tablet once daily with or without food</td>
<td>PK in Pregnancy: • No PK studies in human pregnancy. Dosing in Pregnancy: • Insufficient data to make dosing recommendation. • For guidance about use of combination products in pregnancy, please see the specific sections on other components (i.e., 3TC, TDF)</td>
<td></td>
</tr>
<tr>
<td>Efavirenz (EFV) Sustiva (EFV/FTC/TDF) Atripla (EFV/3TC/TDF) Symfi (EFV/3TC/TDF) Symfi Lo</td>
<td>Efavirenz (Sustiva)(^d) Capsules: • 50 mg • 200 mg Tablet: • 600 mg Efavirenz/FTC/TDF (Atripla): • Efavirenz 600 mg plus FTC 200 mg tablet TDF 300 mg plus</td>
<td>Efavirenz (Sustiva): • Efavirenz 600 mg once daily at or before bedtime, on an empty stomach to reduce side effects Efavirenz/FTC/TDF (Atripla): • 1 tablet once daily at or before bedtime, on an empty stomach to reduce side effects Efavirenz/3TC/TDF (Symfi or Symfi Lo): • 1 tablet once daily on an empty stomach and preferably at bedtime</td>
<td>Moderate placental transfer to fetus.(^b) The FDA advises women to avoid becoming pregnant while taking Efavirenz and advises health care providers to avoid administration during the first trimester of pregnancy, as fetal harm may occur. Although the limited data on first-trimester Efavirenz exposure cannot rule out a 2-fold or 3-fold increased incidence of a rare outcome such as NTDs, the available data from a meta-analysis of >2,000 births suggest that there is no large increase in the risk of neural tube defects with first-trimester exposure (e.g., a 10-fold increase to a rate of 1%). As a result, the current Perinatal Guidelines do not restrict the use of Efavirenz in pregnant women or in women who are planning to become pregnant. This is consistent with both the British HIV Association and WHO guidelines for use of ARV drugs in pregnancy.</td>
<td>December 7, 2018</td>
</tr>
<tr>
<td></td>
<td>Efavirenz/3TC/TDF (Symfi): • Efavirenz 600 mg plus 3TC 300 mg plus TDF 300 mg tablet Efavirenz/3TC/TDF (Symfi Lo): • Efavirenz 400 mg plus 3TC 300 mg plus TDF 300 mg tablet</td>
<td>PK in Pregnancy: • AUC is decreased during the third trimester compared with postpartum, but nearly all third-trimester participants exceeded target exposure. Dosing in Pregnancy: • No change in dose is indicated.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Recommendations for the Use of Antiretroviral Drugs in Pregnant Women with HIV Infection and Interventions to Reduce Perinatal HIV Transmission in the United States

Downloaded from https://aidsinfo.nih.gov/guidelines on 10/20/2019
Table 10. Antiretroviral Drug Use in Pregnant HIV-Infected Women: Pharmacokinetic and Toxicity Data in Human Pregnancy and Recommendations for Use in Pregnancy

<table>
<thead>
<tr>
<th>Generic Name (Abbreviation) Trade Name</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
<th>Last Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efavirenz, continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efavirenz (EFV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Adult Dose</td>
<td>EFV-based regimen, high risk of perinatal transmission (see Pregnant Women Living with HIV Who are Currently Receiving Antiretroviral Therapy).</td>
<td>EFV should be continued in pregnant women who are on a virologically suppressive, EFV-based regimen, because ARV drug changes during pregnancy may be associated with loss of viral control and an increased risk of perinatal transmission (see Pregnant Women Living with HIV Who are Currently Receiving Antiretroviral Therapy).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etravirine (ETR) Intelence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETR (Intelence)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Adult Dose</td>
<td>ETR (Intelence): 200 mg twice daily with food</td>
<td>Variable placental transfer, usually in the moderate to high categories, ranging from 0.19–4.25 (data from 19 mother-infant pairs). No evidence of teratogenicity in humans. No evidence of teratogenicity in rats or rabbits.</td>
<td></td>
<td>December 7, 2018</td>
</tr>
<tr>
<td>PK in Pregnancy</td>
<td>PK data in pregnancy (n = 26) suggest that etravirine exposure during pregnancy increases 1.2-fold to 1.6-fold.</td>
<td>PK in Pregnancy: PK data in pregnancy (n = 26) suggest that etravirine exposure during pregnancy increases 1.2-fold to 1.6-fold. Dosing in Pregnancy: No change in dose indicated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dosing in Pregnancy</td>
<td>No change in dose indicated.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevirapine (NVP) Viramune Viramune XR (Extended Release)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevirapine (NVP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Adult Dose</td>
<td>NVP (Viramune): Viramune XR Tablets: Viramune XR Tablets: 200 mg 100 mg 400 mg 50 mg/5 mL 100 mg 400 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK in Pregnancy</td>
<td>PK of immediate release tablets is not significantly altered in pregnancy.</td>
<td>High placental transfer to fetus. Insufficient data to assess for teratogenicity in humans. No evidence of teratogenicity in rats or rabbits.</td>
<td></td>
<td>December 7, 2018</td>
</tr>
</tbody>
</table>

Note: Generic available for some formulations.
Table 10. Antiretroviral Drug Use in Pregnant HIV-Infected Women: Pharmacokinetic and Toxicity Data in Human Pregnancy and Recommendations for Use in Pregnancy

<table>
<thead>
<tr>
<th>Generic Name (Abbreviation)</th>
<th>Trade Name</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
<th>Last Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nevirapine, continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dosage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No data are available on extended release formulations in pregnancy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dosing in Pregnancy:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• No change in dose indicated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Use in Pregnancy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Life-threatening hepatotoxicity in women with high CD4 cell counts. Elevated transaminase levels at baseline may increase the risk of NVP toxicity.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Women who become pregnant while taking NVP-containing regimens and who are tolerating their regimens well can continue therapy, regardless of CD4 cell count.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rilpivirine (RPV)</td>
<td>Edurant</td>
<td>Tablets:</td>
<td>Standard Adult Dose</td>
<td></td>
<td>December 7, 2018</td>
</tr>
<tr>
<td>(RPV/FTC/TDF)</td>
<td></td>
<td>• 25 mg</td>
<td>RPV (Edurant):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complera (RPV/DTG)</td>
<td>Juluca</td>
<td>RPV 25 mg plus FTC 200 mg plus TDF 300 mg tablet</td>
<td>RPV/FTC/TDF (Complera):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(RPV/FTC/TAF)</td>
<td>Odefsey</td>
<td>1 tablet once daily with food</td>
<td>RPV/DTG (Juluca):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PK in Pregnancy:</td>
<td>1 tablet once daily with food</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• RPV PK highly variable during pregnancy. RPV AUC and trough concentration reduced 20% to 50% lower in pregnancy than postpartum. While most pregnant women exceeded target exposure, those with detectable viral loads had lower RPV troughs.</td>
<td>RPV/FTC/TAF (Odefsey):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 tablet once daily with food</td>
<td>RPV/FTC/TAF (Odefsey):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dosing in Pregnancy:</td>
<td>RPV/FTC/TAF (Odefsey):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• While RPV plasma concentration is reduced during pregnancy, higher-than-standard doses have not been studied. Insufficient data are available to recommend a dosing change in pregnancy. With standard dosing, viral loads should be monitored more frequently.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommendations for the Use of Antiretroviral Drugs in Pregnant Women with HIV Infection and Interventions to Reduce Perinatal HIV Transmission in the United States</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Downloaded from https://aidsinfo.nih.gov/guidelines on 10/20/2019
Table 10. Antiretroviral Drug Use in Pregnant HIV-Infected Women: Pharmacokinetic and Toxicity Data in Human Pregnancy and Recommendations for Use in Pregnancya

<table>
<thead>
<tr>
<th>Generic Name (Abbreviation)</th>
<th>Trade Name</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
<th>Last Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atazanavir (ATV) Reyataz</td>
<td>ATV (Reyataz) Capsules:</td>
<td>Standard Adult Doses</td>
<td>ARV-Naive Patients</td>
<td>Low placental transfer to fetus. December 7, 2018</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 100 mg (generic product only)</td>
<td>Without RTV Boosting:</td>
<td>• ATV 400 mg once daily with food; ATV without RTV boosting is not recommended when used with TDF, H2-receptor antagonists, PPIs, or during pregnancy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 150 mgd</td>
<td>With RTV Boosting:</td>
<td>• ATV 300 mg plus RTV 100 mg once daily with food</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 200 mgd</td>
<td>When combined with EFV in ARV-naive patients: ATV 400 mg plus RTV 100 mg once daily with food</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 300 mgd</td>
<td>ARV-Experienced Patients:</td>
<td>• ATV 300 mg plus RTV 100 mg once daily with food</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral Powder:</td>
<td>Do not use with PPIs or EFV</td>
<td>• ATV 300 mg plus RTV 100 mg once daily with food</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 50 mg packet</td>
<td>If Combined with an H2-Receptor Antagonist:</td>
<td>• ATV 300 mg plus RTV 100 mg once daily with food</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATV/COBI (Evotaz):</td>
<td>If Combined with an H2-Receptor Antagonist and TDF:</td>
<td>• ATV 300 mg plus RTV 100 mg once daily with food</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ATV 300 mg plus COBI 150 mg tablet</td>
<td>Powder Formulation:</td>
<td>• Oral powder is taken with RTV once daily with food at the same recommended adult dose as the capsules.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATV/COBI (Evotaz):</td>
<td>ATV (Reyataz):</td>
<td>• ATV 400 mg once daily with food</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PK in Pregnancy:</td>
<td>ATV (Reyataz):</td>
<td>• ATV concentrations reduced during pregnancy; further reduced when given concomitantly with TDF or H2-receptor antagonist.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATV/COBI (Evotaz):</td>
<td>ATV/COBI (Evotaz):</td>
<td>• No PK studies in human pregnancy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For guidance about use of combination products in pregnancy, please see the specific sections on other components (i.e., COBI).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: ATV must be combined with low-dose RTV boosting in pregnancy.

Note: ATV is not recommended for use in pregnancy. For women who become pregnant while taking ATV/COBI, consider switching to a more effective, recommended regimen. If an ATV/COBI regimen is continued, doses should be administered with food; viral load should be monitored frequently.

Recommended for the Use of Antiretroviral Drugs in Pregnant Women with HIV Infection and Interventions to Reduce Perinatal HIV Transmission in the United States

Downloaded from https://aidsinfo.nih.gov/guidelines on 10/20/2019
Table 10. Antiretroviral Drug Use in Pregnant HIV-Infected Women: Pharmacokinetic and Toxicity Data in Human Pregnancy and Recommendations for Use in Pregnancy

<table>
<thead>
<tr>
<th>Generic Name (Abbreviation) Trade Name</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
<th>Last Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atazanavir, continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darunavir (DRV)</td>
<td></td>
<td></td>
<td></td>
<td>December 7, 2018</td>
</tr>
<tr>
<td>Note: Must be combined with low-dose RTV or COBI boosting.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(DRV/COBI) Prezistax</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(DRV/COBI/FTC/TAF) Syntuzax</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 10. Antiretroviral Drug Use in Pregnant HIV-Infected Women: Pharmacokinetic and Toxicity Data in Human Pregnancy and Recommendations for Use in Pregnancya (page 12 of 21)

<table>
<thead>
<tr>
<th>Generic Name (Abbreviation)</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
<th>Last Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darunavir, continued</td>
<td>FPV (Lexiva) Tablets: • 700 mg Oral Suspension: • 50 mg/mL</td>
<td>recommended for all pregnant women. Increased twice-daily DRV dose (DRV 800 mg plus RTV 100 mg with food) during pregnancy does not result in an increase in darunavir exposure and is not recommended.</td>
<td>FPV should not be used during pregnancy.</td>
<td>December 7, 2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PK in Pregnancy: • Decreased exposure in pregnancy with use of DRV/r. • For guidance about use of combination products in pregnancy, please see the specific sections on other components (i.e., COBI, FTC, TAF)</td>
<td>Low placental transfer to fetus. Insufficient data to assess for teratogenicity in humans. Increased fetal loss in rabbits, but no increase in defects in rats and rabbits.</td>
<td></td>
</tr>
</tbody>
</table>

Note: Must be combined with low-dose RTV boosting in pregnancy.

Insufficient data to assess for teratogenicity in humans. Increased fetal loss in rabbits, but no increase in defects in rats and rabbits.
Table 10. Antiretroviral Drug Use in Pregnant HIV-Infected Women: Pharmacokinetic and Toxicity Data in Human Pregnancy and Recommendations for Use in Pregnancy

<table>
<thead>
<tr>
<th>Generic Name (Abbreviation)</th>
<th>Trade Name</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
<th>Last Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indinavir (IDV)</td>
<td>Crixivan</td>
<td>IDV (Crixivan) Capsules:</td>
<td>Standard Adult Dose Without RTV Boosting:</td>
<td>Minimal placental transfer to fetus.<sup>b</sup></td>
<td>December 7, 2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 200 mg</td>
<td>• IDV 800 mg every 8 hours, taken 1 hour before or 2 hours after meals; may be taken with skim milk or a low-fat meal.</td>
<td>No evidence of human teratogenicity in cases reported to the Antiretroviral Pregnancy Registry (can rule out 2-fold increase in overall birth defects).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 400 mg</td>
<td>• IDV 800 mg plus RTV 100 mg twice daily without regard to meals</td>
<td>Must be given as low-dose, RTV-boosted regimen in pregnancy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PK in Pregnancy:</td>
<td>Theoretical concern regarding increased indirect bilirubin levels, which may exacerbate physiologic hyperbilirubinemia in neonates. Minimal placental passage mitigates this concern.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• IDV exposure markedly reduced when administered without RTV boosting during pregnancy. IDV exposure is low with IDV 400 mg/RTV 100 mg dosing during pregnancy; no PK data available on alternative boosted dosing regimens in pregnancy.</td>
<td>Given the available alternative ARVs, IDV is not recommended for treatment of pregnant women in the United States.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dosing in Pregnancy:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Use of unboosted IDV is not recommended during pregnancy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lopinavir/ Ritonavir (LPV/r)</td>
<td>Kaletra</td>
<td>LPV/r (Kaletra) Tablets (Coformulated):</td>
<td>Standard Adult Dose:</td>
<td>Low placental transfer to fetus.<sup>b</sup></td>
<td>December 7, 2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• LPV/r 200 mg/50 mg</td>
<td>• LPV/r 400 mg/100 mg twice daily, or</td>
<td>No evidence of human teratogenicity (can rule out 1.5-fold increase in overall birth defects).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• LPV/r 100 mg/25 mg</td>
<td>• LPV/r 800 mg/200 mg once daily</td>
<td>Oral solution contains 42% alcohol and 15% propylene glycol and is not recommended for use in pregnancy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral Solution:</td>
<td>Tablets:</td>
<td>Once-daily LPV/r dosing is not recommended during pregnancy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• LPV/r 400 mg/100 mg/5 mL</td>
<td>• Take without regard to food. Oral Solution:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Take with food.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>With EFV or NVP (PI-Naive or PI-Experienced Patients):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• LPV/r 500 mg/125 mg tablets twice daily without regard to meals (use a combination of 2 LPV 200-mg plus RTV 50-mg tablets and 1 LPV 100-mg plus RTV 25-mg tablet), or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• LPV/r 520 mg/130 mg oral solution (6.5 mL) twice daily with food</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 10. Antiretroviral Drug Use in Pregnant HIV-Infected Women: Pharmacokinetic and Toxicity Data in Human Pregnancy and Recommendations for Use in Pregnancy

<table>
<thead>
<tr>
<th>Generic Name (Abbreviation)</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
<th>Last Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lopinavir/Ritonavir, continued</td>
<td></td>
<td>PK in Pregnancy: • With twice-daily dosing, LPV exposure is reduced in pregnant women receiving standard adult doses; increasing the dose by 50% results in exposure equivalent to that seen in nonpregnant adults receiving standard doses. • No PK data are available for once-daily dosing in pregnancy. Dosing in Pregnancy: • Once-daily dosing is not recommended during pregnancy. • Some experts recommend that an increased dose (i.e., LPV/r 600 mg/150 mg twice daily without regard to meals or LPV/r 500 mg/125 mg twice daily without regard to meals) should be used in the second and third trimesters, especially in PI-experienced pregnant women and women who start treatment during pregnancy with a baseline viral load >50 copies/mL. If standard dosing is used, monitor virologic response and, if available, LPV drug levels.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nelfinavir (NFV) Viracept</td>
<td>NFV (Viracept): Tablets: • 250 mg • 625 mg (tablets can be dissolved in a small amount of water) Powder for Oral Suspension: • 50 mg/g</td>
<td>Standard Adult Dose: • NFV 1250 mg twice daily, or • NFV 750 mg 3 times daily with food PK in Pregnancy: • Lower NFV exposure was observed during the third trimester than postpartum in women receiving NFV 1250 mg twice daily; however, adequate drug levels are generally achieved during pregnancy, although levels are variable in late pregnancy. Dosing in Pregnancy: • NFV 750 mg 3 times daily with food is not recommended during pregnancy. No change in standard dose (NFV 1250 mg twice daily with food) indicated.</td>
<td>NFV should not be used during pregnancy. Minimal to low placental transfer to fetus. No evidence of human teratogenicity; can rule out 1.5-fold increase in overall birth defects and 2-fold increase in risk of cardiovascular and genitourinary birth defects. Contains aspartame; should not be used in individuals with phenylketonuria.</td>
<td>December 7, 2018</td>
</tr>
</tbody>
</table>
Table 10. Antiretroviral Drug Use in Pregnant HIV-Infected Women: Pharmacokinetic and Toxicity Data in Human Pregnancy and Recommendations for Use in Pregnancya (page 15 of 21)

<table>
<thead>
<tr>
<th>Generic Name (Abbreviation) Trade Name</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
<th>Last Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saquinavir (SQV) Invirase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: Must be combined with low-dose RTV for PK boosting</td>
<td>SQV (Invirase) Tablet: • 500 mg Capsule: • 200 mg</td>
<td>Standard Adult Dose: • SQV 1000 mg plus RTV 100 mg twice a day with food or within 2 hours after a meal PK in Pregnancy: • Based on limited data, SQV exposure may be reduced in pregnancy, but this effect is not sufficient to warrant a dose change. Dosing in Pregnancy: • No change in dose indicated.</td>
<td>SQV should not be used during pregnancy. Contraindicated in patients with pre-existing cardiac conduction system disease. Baseline ECG recommended before starting, because PR and/or QT interval prolongations have been observed. Low placental transfer to fetus. Insufficient data to assess for teratogenicity in humans. No evidence of teratogenicity in rats or rabbits. SQV should not be used during pregnancy. Contraindicated in patients with pre-existing cardiac conduction system disease. Baseline ECG recommended before starting, because PR and/or QT interval prolongations have been observed. Low placental transfer to fetus. Insufficient data to assess for teratogenicity in humans. No evidence of teratogenicity in rats or rabbits. Must be given as low-dose, RTV-boosted regimen.</td>
<td>December 7, 2018</td>
</tr>
</tbody>
</table>

| **Tipranavir (TPV) Aptivus** | | | | |
| **Note:** Must be combined with RTV for PK boosting | TPV (Aptivus) Capsules: • 250 mg Oral Solution: • 100 mg/mL | Standard Adult Dose: • TPV/r 500 mg/200 mg twice daily With RTV Tablets: • Take with food. With RTV Capsules or Solution: • Take without regard to food; however, administering with food may help make the dose more tolerable. Dosing in Pregnancy: • Insufficient data to make dosing recommendation PK in Pregnancy: • Limited PK data in human pregnancy | **TPV should not be used during pregnancy.** Moderate placental transfer to fetus reported in 1 patient. Insufficient data to assess teratogenicity in humans. No evidence of teratogenicity in rats or rabbits. Must be given as low-dose, RTV-boosted regimen. | December 7, 2018 |

a Recommendations for the Use of Antiretroviral Drugs in Pregnant Women with HIV Infection and Interventions to Reduce Perinatal HIV Transmission in the United States

Downloaded from https://aidsinfo.nih.gov/guidelines on 10/20/2019
Table 10. Antiretroviral Drug Use in Pregnant HIV-Infected Women: Pharmacokinetic and Toxicity Data in Human Pregnancy and Recommendations for Use in Pregnancya

<table>
<thead>
<tr>
<th>Generic Name (Abbreviation)</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
<th>Last Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry Inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Enfuvirtide (T-20) Fuzeon | T-20 (Fuzeon) Injectable:
• Supplied as lyophilized powder. Each vial contains 108 mg of T-20; reconstitute with 1 mL of sterile water for injection for SQ delivery of approximately 90 mg/1 mL. | T-20 is indicated for advanced HIV disease and must be used in combination with other ARV drugs to which the patient’s virus is susceptible, as determined by resistance testing.
Standard Adult Dose:
• T-20 90 mg (1 mL) twice daily without regard to meals
PK in Pregnancy:
• No PK data in human pregnancy.
Dosing in Pregnancy:
• Insufficient data to make dosing recommendation. | Minimal to low placental transfer to fetus.
No data on human teratogenicity. | December 7, 2018 |
| Ibalizumab (IBA) Trogarzo | IBA (Trogarzo) Solution:
• Solution for IV infusion is available in single-dose vials | Standard Adult Dose
IBA (Trogarzo):
• IBA 2000-mg loading dose, followed by IBA 800-mg maintenance doses administered every 2 weeks
Dosing in Pregnancy:
• Insufficient data are available to make dosing recommendation.
PK in Pregnancy:
• No PK studies have been reported in human pregnancy. | No data are available, but placental transfer of IBA, a monoclonal antibody, is possible.
Insufficient data are available to assess for teratogenicity in humans. | December 7, 2018 |
| Maraviroc (MVC) Selzentry | MVC (Selzentry) Tablets:
• 150 mg
• 300 mg | Standard Adult Dose
MVC 300 mg twice daily with or without food
MVC should only be used for patients with CCR5-tropic virus (and no X4-tropic virus).
Dose Adjustments:
• Increase to MVC 600 mg BID when used with potent CYP3A inducers: EFV, ETR, and rifampin.
• Decrease to MVC 150 mg BID when used with CYP3A inhibitors: all PIs except TPV/r, itraconazole. | No evidence of teratogenicity in rats or rabbits; insufficient data to assess for teratogenicity in humans.
MVC placental passage category should be moderate. | December 7, 2018 |
Table 10. Antiretroviral Drug Use in Pregnant HIV-Infected Women: Pharmacokinetic and Toxicity Data in Human Pregnancy and Recommendations for Use in Pregnancya (page 17 of 21)

<table>
<thead>
<tr>
<th>Generic Name (Abbreviation) Trade Name</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
<th>Last Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maraviroc, continued</td>
<td></td>
<td>PK in Pregnancy:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• A PK study in human pregnancy demonstrated a 20% to 30% overall decrease in AUC, but C_{trough} exceeded the recommended minimal concentration of 50 ng/mL.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dosing in Pregnancy:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Standard adult dosing adjusted for concomitant ARV use appears appropriate.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Integrase Inhibitors

<table>
<thead>
<tr>
<th>Bictegravir/ Emtricitabine/ Tenofovir Alafenamide (BIC/FTC/TAF) Biktarvy</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
<th>Last Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIC/FTC/TAF (Biktarvy):</td>
<td></td>
<td>Standard Adult Dose BIC/FTC/TAF (Biktarvy):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• BIC 50 mg plus FTC 200 mg plus TAF 25 mg tablet</td>
<td></td>
<td>• 1 tablet once daily with or without food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dosing in Pregnancy:</td>
<td></td>
<td>• There is insufficient data to make a dosing recommendation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PK in Pregnancy:</td>
<td></td>
<td>• No PK studies have been reported in human pregnancy.</td>
<td></td>
<td>December 7, 2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For guidance about use of combination products in pregnancy, please see the specific sections on other components (i.e., FTC, TAF).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: BIC is not available as a single-entity formulation.

No data are available on placental transfer of BIC.

Insufficient data to assess for teratogenicity in humans. No evidence of teratogenicity in rats or rabbits.

To maximize BIC absorption, doses should not be administered within 2 hours of ingestion of any preparation containing minerals such as iron or calcium, including prenatal vitamins.
Table 10. Antiretroviral Drug Use in Pregnant HIV-Infected Women: Pharmacokinetic and Toxicity Data in Human Pregnancy and Recommendations for Use in Pregnancy^a (page 18 of 21)

<table>
<thead>
<tr>
<th>Generic Name (Abbreviation)</th>
<th>Trade Name</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
<th>Last Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolutegravir
(DTG) Tivicay
(DTG/RPV) Juluca
(DTG/ABC/3TC) Triumeq</td>
<td>DTG (Tivicay)
Tablet:
• DTG 50 mg tablet
DTG/RPV (Juluca):
• DTG 50 mg plus RPV 25 mg tablet
DTG/ABC/3TC (Triumeq):
• DTG 50 mg plus ABC 600 mg plus 3TC 300 mg tablet</td>
<td>Standard Adult Doses
In ARV-Naive or ARV-Experienced (but Integrase Inhibitor-Naive) Patients

DTG (Tivicay):
• 1 tablet once daily, without regard to food
DTG/RPV (Juluca):
• 1 tablet once daily with food
DTG/ABC/3TC (Triumeq):
• 1 tablet once daily, without regard to food

ARV-Naive or ARV-Experienced (but Integrase Inhibitor-Naive) if Given with EFV, FPV/r, TPV/r, or Rifampin; or Integrase Inhibitor-Experienced DTG (Tivicay):
• 1 tablet twice daily, without regard to food

PK in Pregnancy:
• AUC may be decreased during the third trimester compared with postpartum, but good viral suppression observed in third-trimester recipients.

Dosing in Pregnancy:
• No change in dose indicated.

For guidance about use of combination products in pregnancy, please see the specific sections on other components (i.e., ABC, 3TC, RPV)

High placental transfer to fetus.
No evidence of teratogenicity in mice, rats, or rabbits. Preliminary data suggest a possible increased risk of NTDs in infants born to women who initiated DTG prior to pregnancy and were receiving it at the time of conception.
Dolutegravir should not be initiated during the first trimester of pregnancy (less than 14 weeks [up to 13 6/7 weeks] gestational age by LMP.) For more information see Interim Guidance about the Use of Dolutegravir in Pregnancy in Recommendations for Use of Antiretroviral Drugs During Pregnancy.

To maximize DTG absorption, doses should not be administered within 2 hours of ingestion of any preparation containing minerals such as iron or calcium, including prenatal vitamins.
</td>
<td>December 7, 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elvitegravir
(EVG) Vitekta
Note: As of October 2017, Vitekta (i.e., EVG as a single-entity formulation) is no longer available
(EVG/COBI/FTC/TAF) Genvoya
(EVG/COBI/FTC/TDF) Stribild</td>
<td>EVG/COBI/FTC/TAF (Genvoya):
• EVG 150 mg plus COBI 150 mg plus FTC 200 mg plus TAF 10 mg tablet
EVG/COBI/FTC/TDF (Stribild):
• EVG 150 mg plus COBI 150 mg plus FTC 200 mg plus TDF 300 mg tablet</td>
<td>Standard Adult Dose (Genvoya and Stribild):
• 1 tablet once daily with food
Dosing in Pregnancy:
• Insufficient data to make dosing recommendation
PK in Pregnancy:
• PK studies in women who received EVG/c demonstrated significant reduction in EVG plasma exposure during pregnancy.

Evidence of high placental transfer of EVG and low transfer of COBI.
Insufficient data to assess for teratogenicity in humans. No evidence of teratogenicity in rats or rabbits.
EVG/COBI is not recommended for use in pregnancy. For women who become pregnant while taking EVG/c, consider switching to a more effective, recommended regimen. If an EVG/COBI regimen is continued, doses should not be administered within 2 hours of ingestion of any preparation containing minerals such as iron or calcium, including prenatal vitamins.
</td>
<td>December 7, 2018</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 10. Antiretroviral Drug Use in Pregnant HIV-Infected Women: Pharmacokinetic and Toxicity Data in Human Pregnancy and Recommendations for Use in Pregnancy

<table>
<thead>
<tr>
<th>Generic Name (Abbreviation)</th>
<th>Trade Name</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
<th>Last Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elvitegravir, continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raltegravir (RAL)</td>
<td></td>
<td>RAL (Isentress)</td>
<td>Standard Adult Doses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Film-Coated Tablets:</td>
<td>• 400 mg</td>
<td>No change in dose is indicated.</td>
<td>December 7, 2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chewable Tablets:</td>
<td>• 25 mg</td>
<td>Once-daily dosing (i.e., two RAL 600-mg, film-coated tablets) should not be used in pregnant women until more information is available.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 100 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RAL (Isentress HD)</td>
<td>Film-Coated Tablets:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 600 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PK in Pregnancy:</td>
<td>• Decreased drug concentrations in third trimester not of sufficient magnitude to warrant a change in dosing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dosing in Pregnancy:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To maximize RAL absorption, doses should not be administered within 2 hours of ingestion of any preparation containing minerals such as iron or calcium, including prenatal vitamins.

No evidence of human teratogenicity (can rule out 1.5-fold increase in overall birth defects).

Case report of markedly elevated liver transaminases with RAL use in late pregnancy. Severe, potentially life-threatening, and fatal skin and HSRs have been reported in nonpregnant adults.

Chewable tablets contain phenylalanine.

High placental transfer to fetus.

With Rifampin:
• Two RAL 400-mg, film-coated tablets (800 mg) twice daily without regard to food
• Chewable and oral suspension doses are not interchangeable with either film-coated tablets or each other
Table 10. Antiretroviral Drug Use in Pregnant HIV-Infected Women: Pharmacokinetic and Toxicity Data in Human Pregnancy and Recommendations for Use in Pregnancya (page 20 of 21)

<table>
<thead>
<tr>
<th>Generic Name (Abbreviation) Trade Name</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
<th>Last Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobicistat (COBI) Tybost (ATV/COBI) Evotaz (EVG/COBI/FTC/TAF) Genvoya (DRV/COBI) Prezincobix (EVG/COBI/FTC/TDF) Stribild (DRV/COBI/FTC/TAF) Symtuza</td>
<td>COBI (Tybost) Tablet: • COBI 150 mg ATV/COBI (Evotaz): • ATV/COBI 300 mg/50 mg tablet EVG/COBI/FTC/TAF (Genvoya): • EVG 150 mg plus COBI 150 mg plus FTC 200 mg plus TAF 10 mg tablet DRV/COBI (Prezincobix): • DRV/COBI 800 mg/150 mg tablet EVG/COBI/FTC/TDF (Stribild): • EVG 150 mg plus COBI 150 mg plus FTC 200 mg plus TDF 300 mg tablet DRV/COBI/FTC/TAF (Symtuza): • DRV 800 mg plus COBI 150 mg plus FTC 200 mg plus TAF 10 mg tablet</td>
<td>Standard Adult Doses COBI (Tybost): • As an alternative PK booster with ATV or DRV: 1 tablet (150 mg) once daily with food ATV/COBI (Evotaz): • 1 tablet once daily with food EVG/COBI/FTC/TAF (Genvoya): • 1 tablet once daily with food DRV/COBI (Prezincobix): • 1 tablet once daily with food EVG/COBI/FTC/TDF (Stribild): • 1 tablet once daily with food DRV/COBI/FTC/TAF (Symtuza): • 1 tablet once daily with food PK in Pregnancy: • Based on limited data, COBI exposure and pharmaco-enhancing effect on DRV and EVG are markedly reduced in pregnancy. • No data are available on the pharmaco-enhancing effect of COBI on ATV • When coadministered with COBI, TAF exposure is not significantly different between pregnancy and the postpartum period. Dosing in Pregnancy: • While COBI exposure is markedly reduced during pregnancy, higher than standard doses have not been studied. The Panel recommends RTV as the preferred pharmaco-enhancer for PIs and INSTIs during pregnancy until more data are available on COBI activity during pregnancy. • For guidance about the use of combination products in pregnancy, please see the specific sections on other components (i.e., FTC, TAF, TDF, ATV, DRV, EVG):</td>
<td>Low placental transfer to fetus. Insufficient data to assess for teratogenicity in humans. No evidence of teratogenicity in rats or rabbits. Use of COBI-boosted ATV, DRV, or EVG is not recommended in pregnancy.</td>
<td>December 7, 2018</td>
</tr>
</tbody>
</table>
Table 10. Antiretroviral Drug Use in Pregnant HIV-Infected Women: Pharmacokinetic and Toxicity Data in Human Pregnancy and Recommendations for Use in Pregnancy

<table>
<thead>
<tr>
<th>Generic Name (Abbreviation) Trade Name</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
<th>Last Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ritonavir (RTV) Norvir</td>
<td></td>
<td>Standard Adult Dose as PK Booster for Other PIs:</td>
<td>Low placental transfer to fetus.(^b)</td>
<td>December 7, 2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• RTV 100–400 mg per day in 1–2 divided doses (refer to other PIs for specific dosing recommendations.)</td>
<td>No evidence of human teratogenicity (can rule out 1.5-fold increase in overall birth defects).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tablet:</td>
<td>Should only be used as low-dose booster for other PIs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Take with food.</td>
<td>Oral solution contains 43% alcohol and is therefore not recommended during pregnancy, because there is no known safe level of alcohol exposure during pregnancy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Capsule or Oral Solution:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To improve tolerability, take with food if possible.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PK in Pregnancy:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lower levels seen during pregnancy than during postpartum.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dosing in Pregnancy:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• No dosage adjustment necessary when used as booster.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Individual ARV drug dosages may need to be adjusted in patients with renal or hepatic insufficiency (for details, see the Adult and Adolescent Guidelines, Appendix B, Table 8).

\(^b\) Placental transfer categories are determined by mean or median cord blood/maternal delivery plasma drug ratio:

- **High**: >0.6
- **Moderate**: 0.3–0.6
- **Low**: <0.3

\(^c\) Only indicated for use in chronic HBV virus infection in adults.

\(^d\) Generic formulation available

\(^e\) WHO recommends maximum dose of 30 mg twice daily regardless of weight.

Key to Acronyms: 3TC = lamivudine; ABC = abacavir; ART = antiretroviral therapy; ARV = antiretroviral; ATV = atazanavir; ATV/r = atazanavir/ritonavir; AUC = area under the curve; BIC = bictegravir; CD4 = CD4 T lymphocyte; COBI = cobicistat; d4T = stavudine; ddI = didanosine; DOR = doravirine; DRV = darunavir; DRV/r = darunavir/ritonavir; DTG = dolutegravir; Efavirenz; ETR = etravirine; EVG = elvitegravir; FDA = Food and Drug Administration; FDC = fixed-dose combination; FPV = fosamprenavir; FPV/r = fosamprenavir/ritonavir; FTC = emtricitabine; HBV = hepatitis b virus; HSR = hypersensitivity reaction; IBA =ibalizumab; IDV = indinavir; IDV/r = indinavir/ritonavir; INSTI = integrase strand transfer inhibitor; LPV/r = lopinavir/ritonavir; MVC = maraviroc; NVP = nevirapine; PI = protease inhibitor; PK = pharmacokinetic; PPI = proton pump inhibitor; RAL = raltegravir; RPV = rilpivirine; RTV = ritonavir; SQ = subcutaneous; SQV = saquinavir; SQV/r = saquinavir/ritonavir; TAF = tenofovir alafenamide; TDF = tenofovir disoproxil fumarate; TID = 3 times a day; TPV = tipranavir; TPV/r = tipranavir/ritonavir; WHO = World Health Organization; ZDV = zidovudine

Recommendations for the Use of Antiretroviral Drugs in Pregnant Women with HIV Infection and Interventions to Reduce Perinatal HIV Transmission in the United States

Downloaded from https://aidsinfo.nih.gov/guidelines on 10/20/2019
Supplemental Table 1. Results of Major Studies on Antiretroviral Interventions to Prevent Perinatal HIV Transmission

<table>
<thead>
<tr>
<th>Study Name; Location(s); Mode of Infant Feeding</th>
<th>Antiretroviral Drugs</th>
<th>Antepartum and Intrapartum Interventions</th>
<th>Postpartum Interventions</th>
<th>Perinatal Transmission Rate and Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PACTG 076; United States, France; Formula feeding</td>
<td>ZDV vs. placebo</td>
<td>Long (from 14 weeks) IV/IP</td>
<td>Long (6 weeks); infant only</td>
<td>Perinatal transmission at 18 months was 8.3% in ZDV arm vs. 25.5% in placebo arm (68% efficacy).</td>
</tr>
<tr>
<td>CDC Short-Course ZDV Trial; Thailand; Formula feeding</td>
<td>ZDV vs. placebo</td>
<td>Short (from 36 weeks) Oral IP</td>
<td>None</td>
<td>Perinatal transmission at 6 months was 9.4% in ZDV arm vs. 18.9% in placebo arm (50% efficacy).</td>
</tr>
<tr>
<td>DITRAME (ANRS 049a) Trial; Ivory Coast, Burkina Faso; Breastfeeding</td>
<td>ZDV vs. placebo</td>
<td>Short (from 36 weeks) Oral IP</td>
<td>Short (1 week); mother only</td>
<td>Perinatal transmission at 6 months was 18.0% in ZDV arm vs. 27.5% in placebo arm (38% efficacy). Perinatal transmission at 15 months was 21.5% in ZDV arm vs. 30.6% in placebo arm (30% efficacy). Perinatal transmission was 22.5% in ZDV arm vs. 30.2% in placebo arm in pooled analysis at 24 months (26% efficacy).</td>
</tr>
<tr>
<td>CDC Short-Course ZDV Trial; Ivory Coast; Breastfeeding</td>
<td>ZDV vs. placebo</td>
<td>Short (from 36 weeks) Oral IP</td>
<td>None</td>
<td>Perinatal transmission at 3 months was 16.5% in ZDV arm vs. 26.1% in placebo arm (37% efficacy). Perinatal transmission was 22.5% in ZDV arm vs. 30.2% in placebo arm in pooled analysis at 24 months (26% efficacy).</td>
</tr>
<tr>
<td>PETRA Trial; South Africa, Tanzania, Uganda; Breastfeeding and formula feeding</td>
<td>AP/IP/PP ZDV plus 3TC vs. IP/PP ZDV plus 3TC vs. IP-only ZDV plus 3TC vs. Placebo</td>
<td>Short (from 36 weeks) Oral IP</td>
<td>Short (1 week); mother and infant</td>
<td>Perinatal transmission at 6 weeks was 5.7% for AP/IP/PP ZDV plus 3TC, 8.9% for IP/PP ZDV plus 3TC, 14.2% for IP-only ZDV plus 3TC, and 15.3% for placebo (efficacy compared with placebo: 63%, 42%, and 0%, respectively). Perinatal transmission at 18 months was 14.9% for AP/IP/PP ZDV plus 3TC, 18.1% for IP/PP ZDV plus 3TC, 20.0% for IP-only ZDV plus 3TC, and 22.2% for placebo (efficacy compared with placebo: 34%, 18%, and 0%, respectively).</td>
</tr>
</tbody>
</table>
Supplemental Table 1. Results of Major Studies on Antiretroviral Interventions to Prevent Perinatal HIV Transmission (page 2 of 7)

<table>
<thead>
<tr>
<th>Study Name; Location(s); Mode of Infant Feeding</th>
<th>Antiretroviral Drugs</th>
<th>Antepartum and Intrapartum Interventions</th>
<th>Postpartum Interventions</th>
<th>Perinatal Transmission Rate and Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIVNET 012 Trial; Uganda; Breastfeeding</td>
<td>SD NVP vs. ZDV</td>
<td>No AP ARV drugs</td>
<td>SD NVP within 72 hours of birth; infant only vs. ZDV for 1 week; infant only</td>
<td>Perinatal transmission at 6–8 weeks was 11.8% in NVP arm vs. 20.0% in ZDV arm (42% efficacy) and 15.7% in NVP arm vs. 25.8% in ZDV arm at 18 months (41% efficacy).</td>
</tr>
<tr>
<td>SAINT Trial; South Africa; Breastfeeding and formula feeding</td>
<td>SD NVP vs. ZDV plus 3TC</td>
<td>No AP ARV drugs</td>
<td>SD NVP within 48 hours of birth; mother and infant vs. ZDV plus 3TC for 1 week; mother and infant</td>
<td>Perinatal transmission at 8 weeks was 12.3% in SD NVP arm vs. 9.3% in ZDV plus 3TC arm (difference not statistically significant, (P = 0.11)).</td>
</tr>
<tr>
<td>PHPT-1; Thailand; Formula feeding</td>
<td>4 ZDV regimens with different durations of AP and infant PP administration; no placebo</td>
<td>Long (from 28 weeks) or short (from 36 weeks) Oral IP</td>
<td>Long (6 weeks) or short (3 days); infant only</td>
<td>Perinatal transmission rate was 10.5% in the short-short arm. This arm was stopped at interim analysis. Perinatal transmission at 6 months was 6.5% in long-long arm vs. 4.7% in long-short arm and 8.6% in short-long arm (no statistical difference). In utero transmission was significantly higher with short vs. long maternal therapy regimens (5.1% vs. 1.6%).</td>
</tr>
<tr>
<td>PACTG 316 Trial; Bahamas, Belgium, Brazil, France, Germany, Italy, Spain, Sweden, Switzerland, United Kingdom, United States; Formula feeding</td>
<td>SD NVP vs. placebo among women already receiving ZDV alone (23%) or ZDV plus other ARV drugs (77% combination therapy)</td>
<td>Nonstudy ARV regimen Oral IP: • Placebo vs. SD NVP plus IV ZDV</td>
<td>Placebo vs. SD NVP within 72 hours of birth plus nonstudy ARV drugs (ZDV); infant only</td>
<td>77% of women received dual- or triple-combination ARV regimens during pregnancy. Trial stopped early because of very low perinatal transmission in both arms: 1.4% in SD NVP arm vs. 1.6% in placebo arm (53% of perinatal transmission was in utero).</td>
</tr>
<tr>
<td>PHPT-2; Thailand; Formula feeding</td>
<td>ZDV alone vs. ZDV plus maternal and infant SD NVP vs. ZDV plus maternal SD NVP</td>
<td>ZDV from 28 weeks Oral IP: • ZDV alone, or • ZDV plus SD NVP</td>
<td>ZDV for 1 week with or without SD NVP; infant only</td>
<td>ZDV-alone arm was stopped because the rate of perinatal transmission was higher in this arm than in the ZDV/NVP arm (6.3% vs. 1.1%, respectively). In arms in which the mother received SD NVP, the perinatal transmission rate did not differ significantly whether the infant received SD NVP or not (2.0% vs. 2.8%, respectively).</td>
</tr>
<tr>
<td>DITRAME Plus (ANRS 1201.0) Trial; Ivory Coast; Breastfeeding and formula feeding</td>
<td>Open label, ZDV plus SD NVP</td>
<td>ZDV from 36 weeks Oral IP: • ZDV plus SD NVP</td>
<td>SD NVP plus ZDV for 1 week; infant only</td>
<td>Perinatal transmission at 6 weeks was 6.5% (95% CI, 3.9% to 9.1%); perinatal transmission for historical control group receiving short ZDV (98% of whom were breastfed) was 12.8%.</td>
</tr>
<tr>
<td>DITRAME Plus (ANRS 1201.1) Trial; Ivory Coast; Breastfeeding and formula feeding</td>
<td>Open label, ZDV plus 3TC plus SD NVP</td>
<td>ZDV plus 3TC from 32 weeks (stopped at 3 days PP) Oral IP: • ZDV plus 3TC plus SD NVP</td>
<td>SD NVP plus ZDV for 1 week; infant only</td>
<td>Perinatal transmission at 6 weeks was 4.7% (95% CI, 2.4% to 7.0%); perinatal transmission for historical control group receiving short ZDV (98% of whom were breastfed) was 12.8%.</td>
</tr>
</tbody>
</table>
Supplemental Table 1. Results of Major Studies on Antiretroviral Interventions to Prevent Perinatal HIV Transmission (page 3 of 7)

<table>
<thead>
<tr>
<th>Study Name; Location(s); Mode of Infant Feeding</th>
<th>Antiretroviral Drugs</th>
<th>Antepartum and Intrapartum Interventions</th>
<th>Postpartum Interventions</th>
<th>Perinatal Transmission Rate and Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVAZ Trial; Malawi; Breastfeeding</td>
<td>Neonatal SD NVP vs. SD NVP plus ZDV</td>
<td>No AP or IP ARV drugs</td>
<td>SD NVP with or without ZDV for 1 week; infant only</td>
<td>Perinatal transmission at 6–8 weeks was 15.3% in SD NVP plus ZDV arm vs. 20.9% in SD NVP-only arm. Perinatal transmission rates at 6–8 weeks among infants without HIV at birth were 7.7% and 12.1%, respectively (36% efficacy).</td>
</tr>
<tr>
<td>Postnatal NVP plus ZDV Trial; Malawi; Breastfeeding</td>
<td>Neonatal SD NVP vs. SD NVP plus ZDV</td>
<td>No AP ARV Oral IP: • SD NVP</td>
<td>SD NVP with or without ZDV for 1 week; infant only</td>
<td>Perinatal transmission at 6–8 weeks was 16.3% in NVP plus ZDV arm vs. 14.1% in SD NVP-only arm (difference not statistically significant). Perinatal transmission rates at 6–8 weeks among infants without HIV at birth were 6.5% and 16.9%, respectively.</td>
</tr>
<tr>
<td>Post-Exposure Infant Prophylaxis; South Africa; Breastfeeding and formula feeding</td>
<td>Neonatal SD NVP vs. ZDV for 6 weeks</td>
<td>No AP or IP ARV drugs</td>
<td>SD NVP vs. ZDV for 6 weeks</td>
<td>For formula-fed infants only, perinatal transmission at 6 weeks was 14.3% in SD NVP arm vs. 14.1% in ZDV arm (not significant, (P = 0.30)). For breastfed infants only, perinatal transmission was 12.2% in SD NVP arm vs. 19.6% in ZDV arm ((P = 0.03)).</td>
</tr>
<tr>
<td>Mashi; Botswana; Breastfeeding and formula feeding</td>
<td>Initial: • Short-course ZDV with/without maternal and infant SD NVP and with/without breastfeeding Revised: • Short-course ZDV plus infant SD NVP with/without maternal SD NVP and with/without breastfeeding; women with CD4 counts <200 cells/ mm³ received combination therapy.</td>
<td>First Randomization: • ZDV from 34 weeks Oral IP: • ZDV plus either SD NVP or placebo</td>
<td>Second Randomization: • Breastfeeding plus ZDV (infant) 6 months plus SD NVP; infant only, vs. • Formula feeding plus ZDV (infant) 4 weeks plus SD NVP; infant only</td>
<td>Initial Design: • In formula-feeding arm, perinatal transmission at 1 month was 2.4% in maternal and infant SD NVP arm vs. 8.3% in placebo arm ((P = 0.05)). • In breastfeeding plus infant ZDV arm, perinatal transmission at 1 month was 8.4% in SD NVP arm vs. 4.1% in placebo arm (difference not statistically significant). Revised Design: • Perinatal transmission at 1 month was 4.3% in maternal plus infant SD NVP arm vs. 3.7% in maternal placebo plus infant SD NVP arm (no significant difference; no interaction with mode of infant feeding). Perinatal transmission at 7 months was 9.1% in breastfeeding plus ZDV arm vs. 5.6% in formula-feeding arm; mortality at 7 months was 4.9% in breastfeeding plus ZDV arm vs. 9.3% in formula-feeding arm; HIV-free survival at 18 months was 15.6% in the breastfeeding plus ZDV arm vs. 14.2% in the formula-feeding arm.</td>
</tr>
<tr>
<td>SWEN; Uganda, Ethiopia, India; Breastfeeding</td>
<td>SD NVP vs. NVP for 6 weeks</td>
<td>No AP ARV drugs Oral IP: • SD NVP</td>
<td>Infant SD NVP vs. NVP for 6 weeks</td>
<td>Postnatal Infection in Infants Without HIV at Birth: • Perinatal transmission at 6 weeks was 5.3% in SD NVP arm vs. 2.5% in extended NVP arm (risk ratio 0.54, (P = 0.009)). • Perinatal transmission at 6 months was 9.0% in SD NVP arm vs. 6.9% in extended NVP arm (risk ratio 0.80, (P = 0.16)). HIV-free survival was significantly lower in extended NVP arm at both 6 weeks and 6 months of age.</td>
</tr>
</tbody>
</table>
Supplemental Table 1. Results of Major Studies on Antiretroviral Interventions to Prevent Perinatal HIV Transmission

<table>
<thead>
<tr>
<th>Study Name; Location(s); Mode of Infant Feeding</th>
<th>Antiretroviral Drugs</th>
<th>Antepartum and Intrapartum Interventions</th>
<th>Postpartum Interventions</th>
<th>Perinatal Transmission Rate and Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEPI-Malawi Trial; Malawi; Breastfeeding</td>
<td>SD NVP plus ZDV for 1 week (control) vs. 2 extended infant regimens (NVP or NVP/ZDV) for 14 weeks</td>
<td>No AP ARV drugs Oral IP: • SD NVP (if mother presents in time)</td>
<td>Infant SD NVP plus ZDV for 1 week (control) vs. Control plus NVP for 14 weeks vs. Control plus NVP/ZDV for 14 weeks</td>
<td>Postnatal Infection in Infants Without HIV at Birth: • Perinatal transmission at 6 weeks was 5.1% in control arm vs. 1.7% in extended NVP arm (67% efficacy) and 1.6% in extended NVP/ZDV arm (69% efficacy). • Perinatal transmission at 9 months was 10.6% in control arm vs. 5.2% in extended NVP arm (51% efficacy) and 6.4% in extended NVP/ZDV arm (40% efficacy). No significant difference in perinatal transmission between the extended prophylaxis arms; however, more hematologic toxicity with NVP/ZDV.</td>
</tr>
<tr>
<td>MITRA; Tanzania; Breastfeeding</td>
<td>Infant 3TC for 6 months (observational)</td>
<td>ZDV/3TC from 36 weeks through labor</td>
<td>Maternal ZDV/3TC for 1 week; infant 3TC for 6 months</td>
<td>Perinatal transmission at 6 months was 4.9% (postnatal perinatal transmission between 6 weeks and 6 months was 1.2%).</td>
</tr>
<tr>
<td>Kisumu Breastfeeding Study; Kenya; Breastfeeding</td>
<td>Maternal triple-drug prophylaxis (observational)</td>
<td>ZDV/3TC/NVP (NFV if CD4 count >250 cells/mm³) from 34 weeks through labor</td>
<td>Maternal ZDV/3TC/NVP (NFV if CD4 count >250 cells/mm³) for 6 months, infant SD NVP</td>
<td>Perinatal transmission at 6 months was 5.0% (postnatal perinatal transmission between 7 days and 6 months was 2.6%).</td>
</tr>
<tr>
<td>MITRA-PLUS; Tanzania; Breastfeeding</td>
<td>Maternal triple-drug prophylaxis (observational)</td>
<td>ZDV/3TC/NVP (NFV if CD4 count >200 cells/mm³) from 34 weeks through labor</td>
<td>Maternal ZDV/3TC/NVP (NFV if CD4 count >200 cells/mm³) for 6 months, infant SD NVP</td>
<td>Perinatal transmission at 6 months was 5.0% (postnatal perinatal transmission between 6 weeks and 6 months was 0.9%), not significantly different from 6-month infant prophylaxis in MITRA.</td>
</tr>
<tr>
<td>Kesho Bora; Multi-African; Breastfeeding primarily</td>
<td>AP ZDV/SD NVP with no postnatal prophylaxis vs. Maternal triple-drug prophylaxis in women with CD4 counts 200–500 cells/mm³</td>
<td>Arm 1: ZDV/3TC/LPV/r from 28 weeks through labor Arm 2: ZDV plus SD NVP</td>
<td>Arm 1: Maternal ZDV/3TC/NPV (NFV if CD4 count >200 cells/mm³) for 6 months, infant SD NVP plus ZDV for 1 week Arm 2: Maternal ZDV/3TC for 1 week (no further postnatal prophylaxis), infant SD NVP plus ZDV for 1 week (no further postnatal prophylaxis)</td>
<td>Perinatal transmission at birth was 1.8% with maternal triple-drug prophylaxis (Arm 1) vs. 2.5% with ZDV/SD NVP (Arm 2), not significantly different. In women with CD4 counts 350–500 cells/mm³, perinatal transmission at birth was 1.7% in both arms. Perinatal transmission at 12 months was 5.4% with maternal triple-drug prophylaxis (Arm 1) vs. 9.5% with ZDV/SD NVP (with no further postnatal prophylaxis after 1 week) (Arm 2) (P = 0.029).</td>
</tr>
<tr>
<td>Mma Bana; Botswana; Breastfeeding</td>
<td>Compared 2 maternal triple-drug prophylaxis regimens in women with CD4 counts >200 cells/mm³</td>
<td>Arm 1: ZDV/3TC/ABC Arm 2: ZDV/3TC/LPV/r from 26 weeks through labor</td>
<td>Arm 1: Maternal ZDV/3TC/ABC for 6 months, infant SD NVP plus ZDV for 4 weeks Arm 2: Maternal ZDV/3TC/LPV/r for 6 months, infant SD NVP plus ZDV for 4 weeks</td>
<td>Perinatal transmission at 6 months overall was 1.3%: 2.1% in ZDV/3TC/ABC Arm 1 vs. 0.4% in ZDV/3TC/LPV/r Arm 2 (P = 0.53).</td>
</tr>
</tbody>
</table>
Supplemental Table 1. Results of Major Studies on Antiretroviral Interventions to Prevent Perinatal HIV Transmission (page 5 of 7)

<table>
<thead>
<tr>
<th>Study Name; Location(s); Mode of Infant Feeding</th>
<th>Antiretroviral Drugs</th>
<th>Antepartum and Intrapartum Interventions</th>
<th>Postpartum Interventions</th>
<th>Perinatal Transmission Rate and Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAN; Malawi; Breastfeeding</td>
<td>Postpartum maternal triple-drug prophylaxis vs. infant NVP in women with CD4 counts ≥250 cells/mm³</td>
<td>No AP drugs</td>
<td>Arm 1 (Control): Maternal ZDV/3TC for 1 week; infant SD NVP plus ZDV/3TC for 1 week</td>
<td>Postnatal Infection in Infants Without HIV at 2 Weeks: Perinatal transmission at 28 weeks was 5.7% in control Arm 1, 2.9% in maternal triple-drug prophylaxis Arm 2 (P = 0.009 vs. control), and 1.7% in infant NVP Arm 3 (P < 0.001 vs. control). Perinatal transmission at 48 weeks was 7.0% in control Arm 1, 4.0% in maternal triple-drug prophylaxis Arm 2 (P = 0.0273 vs. control), and 4% in infant NVP Arm 3 (P = 0.0027 vs. control). No significant difference between maternal triple-drug prophylaxis (Arm 2) and infant NVP (Arm 3) (P = 0.12 at 28 weeks and P = 0.426 at 48 weeks).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IP Regimens</td>
<td>Arm 2: Control as above, then maternal ZDV/3TC/LPV/r for 6 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arm 3: Control as above, then infant NVP for 6 months</td>
<td>Arm 3: Control as above, then infant NVP for 6 months</td>
<td></td>
</tr>
<tr>
<td>HPTN 046; South Africa, Tanzania, Uganda, Zimbabwe; Breastfeeding</td>
<td>Postpartum prophylaxis to prevent breast milk transmission of HIV with 6 weeks of infant NVP vs. 6 months of infant NVP</td>
<td>AP drugs allowed if required for maternal health</td>
<td>All infants received daily NVP from birth through age 6 weeks.</td>
<td>In infants without HIV at age 6 weeks, the 6-month infant HIV infection rate was 1.1% (0.3% to 1.8%) in the extended NVP arm vs. 2.4% (1.3% to 3.6%) in the placebo arm (P = 0.048). 18-month postnatal infection rates were 2.2% (1.1% to 3.3%) in the extended NVP arm vs. 3.1% (1.9% to 4.4%) in the placebo arm (P = 0.28). HIV infection and mortality rates did not differ between arms at any age through 18 months. At infant randomization at age 6 weeks, 29% of mothers in each arm were receiving a triple-drug ARV regimen for the treatment of HIV. For mothers receiving triple-drug ARV regimens at the time of randomization, in infants without HIV at age 6 weeks, the 6-month infant HIV infection rate was 0.2% and not statistically different from the rates seen in the extended NVP arm (0.5%) and placebo arm (0%). For mothers with CD4 counts >350 cells/mm³ who were not receiving triple-drug ARV regimens, in infants without HIV at age 6 weeks, the 6-month infant HIV infection rate was 0.7% (0% to 1.5%) in the extended NVP arm vs. 2.8% (1.3% to 4.4%) in the placebo arm (P = 0.014).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arm 1: Daily infant NVP from 6 weeks through 6 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arm 2: Daily infant placebo from 6 weeks through 6 months</td>
<td></td>
</tr>
</tbody>
</table>
Supplemental Table 1. Results of Major Studies on Antiretroviral Interventions to Prevent Perinatal HIV Transmission (page 6 of 7)

<table>
<thead>
<tr>
<th>Study Name; Location(s); Mode of Infant Feeding</th>
<th>Antiretroviral Drugs</th>
<th>Antepartum and Intrapartum Interventions</th>
<th>Postpartum Interventions</th>
<th>Perinatal Transmission Rate and Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>NICHD-HPTN 040/PACTG 1043 Trial; Brazil, Argentina, South Africa, United States</td>
<td>Infant prophylaxis with 6 weeks of ZDV vs. 6 weeks of infant ZDV plus 3 doses of NVP in first week of life vs. 6 weeks of infant ZDV plus 2 weeks 3TC/NFV</td>
<td>No AP drugs If mother presented early enough, IV ZDV during labor through delivery</td>
<td>Arm 1 (Control): • Infant ZDV for 6 weeks Arm 2: • Control as above plus NVP, with first dose within 48 hours of birth, second dose 48 hours later, and third dose 96 hours after second dose Arm 3: • Control as above, plus 3TC and NFV from birth through age 2 weeks</td>
<td>IP HIV transmission among infants with negative HIV test at birth: 4.8% (3.2% to 7.1%) with ZDV (Arm 1) vs. 2.2% (1.2% to 3.9%) with ZDV plus NVP (Arm 2) (P = 0.046 compared with Arm 1) vs. 2.4% (1.4% to 4.3%) with ZDV plus 3TC/NFV (Arm 3) (P = 0.046 compared with Arm 1). Overall HIV transmission rates, including in utero infection: 11.0% (8.7% to 14.0%) with ZDV (Arm 1) vs. 7.1% (5.2% to 9.6%) with ZDV plus NVP (Arm 2) (P = 0.035 compared with Arm 1) vs. 7.4% (5.4% to 9.9%) with ZDV plus 3TC/NFV (Arm 3) (P = 0.035 compared with Arm 1). Grade 3 or 4 neutropenia more frequent in ZDV/3TC/NFV Arm 3 (70 infants) than in ZDV-alone Arm 1 (33 infants) or ZDV/NVP Arm 2 (32 infants) (P < 0.001).</td>
</tr>
<tr>
<td>ANRS 12174 Trial; Burkina Faso, South Africa, Uganda, Zambia</td>
<td>Compared 2 infant ARV prophylaxis regimens during breastfeeding; infants tested PCR-negative at birth and were born to mothers with CD4 counts >350 cells/mm³</td>
<td>As per standard of care</td>
<td>Arm 1: • Daily infant LPV/r from 1 week through 50 weeks of age Arm 2: • Daily infant 3TC from 1 week through 50 weeks of age</td>
<td>Postnatal Infection in Infants Without HIV at Birth: • Postnatal transmission at age 50 weeks was 1.4% (0.70–2.76) in Arm 1 vs. 1.5% (0.80–2.91) in Arm 2 (P = 0.83). • HIV-free survival was 96.5% (84.6–97.7) in Arm 1 vs. 96.3% (94.4–97.5) in Arm 2 (P = 0.85).</td>
</tr>
<tr>
<td>PROMOTE; Uganda</td>
<td>Compared 2 triple-ARV regimens; no CD4 restriction</td>
<td>Randomized regimen continued postpartum through 1 year of breastfeeding</td>
<td>Arm 1: • ZDV/3TC/LPV/r • ZDV/3TC/EFV • ARVs started at 12–28 weeks’ gestation and continued through labor</td>
<td>HIV-free survival was 92.9% in the LPV/r arm vs. 97.2% in the EFV arm (P = 0.10). Only 2 of 374 liveborn infants acquired infection, both in the LPV/r arm.</td>
</tr>
<tr>
<td>PROMISE; India, Malawi, South Africa, Tanzania, Uganda, Zambia, Zimbabwe</td>
<td>Compared ZDV prophylaxis and 2 ART regimens during pregnancy among women at >14 weeks’ gestation and with CD4 counts ≥350 cells/mm³</td>
<td>Arm 1: • TDF/FTC tail continued for 6–14 days postpartum Arms 2 and 3: • ART regimen continued for 6–14 days postpartum Infants received once-daily NVP for 6 weeks.</td>
<td>Infant HIV Infection Rates by Age 14 Days Arm 1: • 1.8% (25/1,386) Arm 2: • 0.5% (7/1,385) Arm 3: • 0.6% (2/325) Combined ART arms vs. ZDV arm difference in perinatal transmission risk: -1.3% (95% CI, -2.1% to -0.4%)</td>
<td></td>
</tr>
</tbody>
</table>
Supplemental Table 1. Results of Major Studies on Antiretroviral Interventions to Prevent Perinatal HIV Transmission (page 7 of 7)

<table>
<thead>
<tr>
<th>Study Name; Location(s); Mode of Infant Feeding</th>
<th>Antiretroviral Drugs</th>
<th>Antepartum and Intrapartum Interventions</th>
<th>Postpartum Interventions</th>
<th>Perinatal Transmission Rate and Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROMISE; India, Malawi, South Africa, Tanzania, Uganda, Zambia, Zimbabwe;(^{16}) Breastfeeding (postpartum component)</td>
<td>Compared infant NVP and maternal ART during breastfeeding among infants born to women with CD4 counts ≥350 cells/mm(^3)</td>
<td>This was a postpartum study; intervention only. Eligible women included women enrolled in PROMISE antepartum (see above) and women who received no ARV drugs during pregnancy.</td>
<td>Arm 1: • Mothers received TDF plus FTC plus LPV/r Arm 2: • Once-daily infant NVP Regimens were continued until 42 days after last breastmilk exposure or age 18 months, whichever came first.</td>
<td>Infant Infection Rates: Arm 1: • 0.57% (7/1,219) Arm 2: • 0.58% (7/1,211) Rates of Infant HIV-1–Free Survival at 24 Months Arm 1: • 97.1% Arm 2: • 97.7%</td>
</tr>
</tbody>
</table>

Key to Acronyms: 3TC = lamivudine; ABC = abacavir; AP = antepartum; ARV = antiretroviral; ART = antiretroviral therapy; CD4 = CD4 T lymphocyte; CDC = Centers for Disease Control and Prevention; CI = confidence interval; EFV = efavirenz; FTC = emtricitabine; IP = intrapartum; IV = intravenous; LPV/r = lopinavir/ritonavir; NFV = nelfinavir; NVP = nevirapine; PCR = polymerase chain reaction; PP = postpartum; SD = single-dose; TDF = tenofovir disoproxil fumarate; ZDV = zidovudine