Considerations About Interruptions in Antiretroviral Therapy
(Last updated April 16, 2019, last reviewed April 16, 2019)

Unplanned Interruptions

Temporary discontinuation of antiretroviral therapy (ART) may be unavoidable in some situations, such as in cases of serious treatment-related toxicity, acute illnesses, or planned surgeries that preclude oral intake. Lack of available medication may also result in temporary ART discontinuation. In resource-limited settings, children might experience interruptions due to drugs being out of stock locally; there may also be gaps in medication availability during the immigration process. Prolonged interruptions of ART can also result from disengagement from care or other social or psychological issues that affect adherence.

Observational studies of children and youth with unplanned or nonprescribed treatment interruptions suggest that interruptions are common, that most patients will experience immunologic decline during the treatment interruption, and that most patients restart therapy.¹⁻³ In a retrospective study of 483 children in the ANRS French national pediatric cohort, 42% of participants had treatment interruptions of ≥3 months (median 12.1 months). Interruption was associated with lower CD4 T lymphocyte cell (CD4) percentages after 4 years, even in those who restarted therapy.⁴ A similar retrospective study of 136 youth (median age 12.9 years) in the United States found that 38 participants (28%) with histories of treatment interruption had lower CD4 counts and higher HIV RNA levels than participants who had continuous treatment.⁵

Whether unplanned interruptions occur by accident or necessity (e.g., because of toxicity), all efforts should be made to minimize their duration. If a child will be traveling for an extended period of time, clinicians can help prevent treatment interruption by ensuring that the child will have access to the necessary drugs during the trip. If the required drugs will not be available at the destination, pharmacies can be asked to dispense extra medication. Additional guidance on supporting adherence can be found in Adherence to Antiretroviral Therapy in Children and Adolescents Living with HIV.

Structured Treatment Interruptions

Scheduled periods during which ART is not given, known as “structured treatment interruptions,” were once considered a potential strategy to provide patients with time off ART, potentially reducing toxicity, costs, and drug-related treatment failures. Randomized clinical trials of adults with HIV have demonstrated that structured treatment interruptions are associated with significantly higher morbidity and mortality compared to continuous ART.⁶ Current Department of Health and Human Services guidelines recommend against planned long-term structured treatment interruptions in adults (see Discontinuation or Interruption of Antiretroviral Therapy in the Adult and Adolescent Antiretroviral Guidelines).

Few studies have evaluated structured treatment interruption in children. In one trial from Europe and Thailand (PENTA 11), 109 children (median age 9 years) with virologic suppression on ART were randomized to receive continuous therapy (CT) or to undergo treatment interruption. While there were no

Panel’s Recommendations

- Outside the context of clinical trials, structured interruptions of antiretroviral therapy are not recommended for children (AII).

Rating of Recommendations: A = Strong; B = Moderate; C = Optional

Rating of Evidence: I = One or more randomized trials in children with clinical outcomes and/or validated endpoints; I* = One or more randomized trials in adults with clinical outcomes and/or validated laboratory endpoints with accompanying data in children from one or more well-designed, nonrandomized trials or observational cohort studies with long-term clinical outcomes; II = One or more well-designed, nonrandomized trials or observational cohort studies in children with long-term outcomes; II* = One or more well-designed, nonrandomized trials or observational studies in adults with long-term clinical outcomes with accompanying data in children from one or more similar nonrandomized trials or cohort studies with clinical outcome data; III = Expert opinion

† Studies that include children or children/adolescents, but not studies limited to post-pubertal adolescents
significant differences in rates of adverse events (AEs) between the two groups at 2 years, 19 of 56 (34%) children in the structured treatment interruption arm met CD4 cell criteria to restart therapy between 6 weeks and 42 weeks after interruption, suggesting that only limited additional time off ART was made possible by this strategy. The CHER trial in South Africa was designed to determine whether infants who initiated ART early could safely discontinue therapy at either 40 weeks or 96 weeks; infants would re-initiate treatment based on CD4 cell decline. The median time to the start of continuous ART after interruption was 33 weeks (interquartile range [IQR] 26 weeks–45 weeks) among the infants who discontinued ART after 40 weeks and 70 weeks (IQR 35 weeks–109 weeks) among the infants who discontinued ART after 96 weeks. A secondary analysis of neurodevelopmental outcomes at age 5 years did not show any significant differences among the children in the different study arms. However, brain magnetic resonance imaging studies in a subset of participants at 5 years suggested that children whose ART was interrupted had reduced cortical thickness and lower gyriﬁcation in some brain regions compared with children who received continuous ART without interruption. In another randomized trial, 12 of 21 infants in the treatment interruption arm met ART restart criteria within 3 months. In summary, while trials of structured treatment interruptions in children have not shown significant short-term morbidity, the gains in time off ART are limited, and the long-term outcomes remain unknown.

The case of an infant from Mississippi who initiated ART soon after birth and had a prolonged period of time without viremia after an unplanned treatment interruption raised the hope that it may be possible to stop or reduce the intensity of ART (e.g., use fewer agents) in some infants (see Antiretroviral Management of Newborns with Perinatal HIV Exposure or Perinatal HIV). However, the “Mississippi infant” had documented viral rebound after 28 months off ART, and there have been additional reports of infants who experienced rebound viremia after stopping ART, despite having undetectable HIV DNA and RNA while on ART. Future research might identify treatment strategies and diagnostic tests that enable ART to be safely interrupted in some children. However, at present, the Panel on Antiretroviral Therapy and Medical Management of Children Living with HIV (the Panel) does not recommend treatment interruption as a strategy to confirm diagnosis or to assess remission or cure in infants who reverted to negative serology, tested negative for HIV DNA, or received an initial diagnosis that was based on a single positive nucleic acid test. The Panel encourages providers to consult an expert on pediatric HIV when they are concerned about the validity of the test results that led to treatment initiation in children with HIV.

Short-Cycle Treatment Strategies

One approach, called short-cycle therapy (SCT), schedules 4-day treatment interruptions, rather than waiting to restart ART after CD4 cell count declines or other AEs occur. In one proof-of-concept study (ATN015), 32 participants (aged 12 years–24 years) underwent short cycles of 4 days on/3 days off ART. Participants had at least 6 months of documented viral suppression (HIV RNA <400 copies/mL) and CD4 counts above 350 cells/mm³ and were receiving protease inhibitor-based ART. Most participants demonstrated good adherence to the schedule, but 12 participants (37.5%) developed confirmed viral load rebounds >400 copies/mL, and a total of 18 participants (56%) came off study. SCT had no impact on CD4 cell counts.

A more recent study suggests that scheduling shorter periods of time off ART could result in better outcomes. BREATHER (PENTA 16) was a noninferiority trial that randomized 199 children (aged 8 years–24 years) to receive SCT (5 days on/2 days off) or CT. To enroll, participants had to be receiving efavirenz plus two nucleoside reverse transcriptase inhibitors, and they had to have been virologically suppressed (viral load <50 copies/mL) for >12 months. By 48 weeks, six participants (6%) in the SCT arm and seven participants (7%) in the CT arm experienced confirmed virologic failure (viral load >50 copies/mL) (difference -1.2%; 90% CI, -7.3% to 4.9%). Of the six participants in the SCT arm who experienced virologic failure, five were able to regain virologic suppression. Two participants in the SCT arm and five participants in the CT arm had major mutations related to resistance to non-nucleoside reverse transcriptase inhibitors at the time of virologic failure. At 48 weeks, the SCT arm had higher d-dimer levels but no other evidence of increased inflammation across a number of other biomarkers. Participants generally reported appreciating the option of SCT.
A long-term follow-up study of children from the BREATHER study (which included 194 of the original 199 children) suggests comparable virologic failure rates between the SCT and CT arms after a median 3.6 years; both arms had a failure rate of approximately 16%. The participants in the SCT arm experienced a greater number of serious AEs than participants in the CT arm (20 serious AEs in the SCT arm vs. eight in the CT arm, with primary difference being rate by hospitalizations); however, the arms experienced comparable rates of Centers for Disease Control and Prevention-stage AEs and Grade 3 or 4 AEs. The BREATHER trial suggests that SCT with efavirenz-based ART may be safe in some adolescents and may yield increased patient satisfaction that could lead to better long-term adherence. However, the Panel believes that additional data are needed to decide whether this strategy would be safe in different patient populations, with different ART regimens, outside of the context of a trial, and over longer periods of time.

Conclusion

Most studies have shown that treatment can only be safely interrupted in children with HIV for short periods of time. Furthermore, treatment interruption yields minimal potential benefits to counterbalance the risks associated with the use of this strategy, and there is a limited amount of long-term follow-up data. The lower toxicity of current antiretroviral agents decreases the potential benefits of treatment interruptions. It is possible that SCT strategies may be safe for some patients, but additional data are needed to support the use of these strategies. At the present time, the Panel does not recommend structured treatment interruption in the clinical care of children with HIV; additional studies of treatment interruption strategies in specific situations may be warranted.

References

