skip navigation

Skip Nav

Clinical Guidelines Portal

Clinical Guidelines Portal

Table of Contents

Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection

Management of Medication Toxicity or Intolerance


(Last updated: March 5, 2015; last reviewed: March 5, 2015)

Panel's Recommendations

Panel's Recommendations

  • In children who have severe or life-threatening toxicity, all antiretroviral drugs should be stopped immediately (AIII). Once symptoms of toxicity have resolved, antiretroviral therapy should be resumed with substitution of a different antiretroviral drug or drugs for the offending agent(s) (AII*).
  • When modifying therapy because of toxicity or intolerance to a specific drug in children with virologic suppression, changing one drug in a multidrug regimen is permissible; if possible, an agent with a different toxicity and side-effect profile should be chosen (AI*).
  • The toxicity and the medication presumed responsible should be documented in the medical record and the caregiver and patient advised of the drug-related toxicity (AIII).
  • Dose reduction is not a recommended option for management of ARV toxicity, except for those few antiretroviral drugs for which a therapeutic range of plasma concentrations detected by therapeutic drug monitoring correlates with toxicity (AII*).
Rating of Recommendations: A = Strong; B = Moderate; C = Optional
Rating of Evidence: I = One or more randomized trials in children with clinical outcomes and/or validated endpoints; I* = One or more randomized trials in adults with clinical outcomes and/or validated laboratory endpoints with accompanying data in children from one or more well-designed, nonrandomized trials or observational cohort studies with long-term clinical outcomes; II = One or more well-designed, nonrandomized trials or observational cohort studies in children with long-term outcomes; II* = One or more well-designed, nonrandomized trials or observational studies in adults with long-term clinical outcomes with accompanying data in children from one or more similar nonrandomized trials or cohort studies with clinical outcome data; III = Expert opinion

Studies that include children or children/adolescents but not studies limited to post-pubertal adolescents

Medication Toxicity or Intolerance

The goals of combination antiretroviral therapy (cART) include achieving and maintaining viral suppression and improving immune function, with a regimen that is not only effective but also as tolerable and safe as possible. This requires consideration of the toxicity potential of a cART regimen, as well as the individual child’s underlying conditions, concomitant medications, and prior history of drug intolerances or viral resistance.

Adverse effects have been reported with use of all antiretroviral (ARV) drugs, and are among the most common reasons for switching or discontinuing therapy, and for medication nonadherence. However, rates of treatment-limiting adverse events in ARV-naive patients enrolled in randomized trials or large observational cohorts appear to be declining with increased availability of better-tolerated and less toxic cART regimens and are generally less than 10%.1-12 In general, the overall benefits of cART outweigh its risks, and the risk of some abnormal laboratory findings (e.g., anemia, renal impairment) may be lower with cART than in its absence.

ARV drug-related adverse events can vary in severity from mild to severe and life-threatening. Drug-related toxicity can be acute (occurring soon after a drug has been administered), subacute (occurring within 1 to 2 days of administration), or late (occurring after prolonged drug administration). For some ARV medications, pharmacogenetic markers associated with risk of early toxicity have been identified, but the only such screen in routine clinical use is HLA B*5701 as a marker for abacavir hypersensitivity.13 For selected children aged <3 years who require treatment with efavirenz, an additional pharmacogentic marker, CYP2B6 genotype, should be assessed (see Efavirenz in Appendix A: Pediatric Antiretroviral Drug Information).14 For a few other ARV drugs, known therapeutic ranges for plasma concentrations as determined by therapeutic drug monitoring (TDM) may indicate the need for dose reduction or modification of cART in patients experiencing adverse effects (see below and Role of Therapeutic Drug Monitoring in Management of Pediatric HIV Infection).

The most common acute and chronic adverse effects associated with ARV drugs or drug classes are presented in the Management of Medication Toxicity or Intolerance tables. The tables include information on common causative drugs, estimated frequency of occurrence, timing of symptoms, risk factors, potential preventive measures, and suggested clinical management strategies and provide selected references regarding these toxicities in pediatric patients.


Management of medication-related toxicity should take into account its severity, the relative need for viral suppression, and the available ARV options. In general, mild and moderate toxicities do not require discontinuation of therapy or drug substitution. However, even mild adverse effects may have a negative impact on medication adherence and should be discussed before therapy is initiated, at regular provider visits, and at onset of any adverse effects. Common, self-limited adverse effects should be anticipated, and reassurance provided that many adverse effects will resolve after the first few weeks of cART. For example, when initiating therapy with boosted protease inhibitors (PIs), many patients experience gastrointestinal adverse effects such as nausea, vomiting, diarrhea, and abdominal pain. Instructing patients to take PIs with food may help minimize these side effects. Some patients may require antiemetics and antidiarrheal agents for symptom management. Central nervous system (CNS) adverse effects are commonly encountered when initiating therapy with efavirenz. Symptoms can include dizziness, drowsiness, vivid dreams, or insomnia. Patients should be instructed to take efavirenz-containing regimens at bedtime, on an empty stomach, to help minimize these adverse effects. They should be advised that these adverse effects usually diminish in general within 2 to 4 weeks of initiating therapy in most people, but may persist for months in some, and may require a medication change.15-17 In addition, mild rash can be ameliorated with drugs such as antihistamines. For some moderate toxicities, using a drug in the same class as the one causing toxicity but with a different toxicity profile may be sufficient and discontinuation of all therapy may not be required.

In patients who experience an unacceptable adverse effect from cART, every attempt should be made to identify the offending agent and replace the drug with another effective agent as soon as possible.1,18 Many experts will stagger a planned interruption of a non-nucleoside reverse transcriptase inhibitor (NNRTI)-based regimen, stopping the NNRTI first and the dual nucleoside analogue reverse transcriptase backbone 7 to 14 days later because of the long half-life of NNRTI drugs. For patients who have a severe or life-threatening toxicity, however, all components of the drug regimen should be stopped simultaneously, regardless of drug half-life. Once the offending drug or alternative cause for the adverse event has been determined, planning can begin for resumption of therapy with a new ARV regimen that does not contain the offending drug or with the original regimen, if the event is attributable to another cause. All drugs in the ARV regimen should then be started simultaneously, rather than one at a time with observation for adverse effects.

When therapy is changed because of toxicity or intolerance in a patient with virologic suppression, agents with different toxicity and side-effect profiles should be chosen, when possible.19-23 Clinicians should have comprehensive knowledge of the toxicity profile of each agent before selecting a new regimen. In the event of drug intolerance, changing a single drug in a multidrug regimen is permissible for patients whose viral loads are undetectable. However, substitution of a single active agent for a single drug in a failing multidrug regimen (e.g., a patient with virologic failure) is generally not recommended because of concern for development of resistance (see Recognizing and Managing Antiretroviral Treatment Failure in Management of Children Receiving Antiretroviral Therapy).

TDM may be used in the management of the child with mild or moderate toxicity if the toxicity is thought to be the result of a drug concentration exceeding the normal therapeutic range24,25 (see Role of Therapeutic Drug Monitoring). This is the only setting in which dose reduction would be considered appropriate management of drug toxicity, and even then, it should be used with caution; an expert in the management of pediatric HIV infection should be consulted.

To summarize, management strategies for drug intolerance include:
  • Symptomatic treatment of mild-to-moderate transient side effects.
  • If necessary, change from one drug to another drug to which a patient’s virus is sensitive (such as changing to abacavir for zidovudine-related anemia or to nevirapine for efavirenz-related CNS symptoms).
  • Change drug class, if necessary (such as from a PI to a NNRTI or vice versa) and if a patient’s virus is sensitive to a drug in that class.
  • Dose reduction only when drug levels are determined excessive.


  1. Elzi L, Marzolini C, Furrer H, et al. Treatment modification in human immunodeficiency virus-infected individuals starting combination antiretroviral therapy between 2005 and 2008. Arch Intern Med. 2010;170(1):57-65. Available at
  2. Sauvageot D, Schaefer M, Olson D, Pujades-Rodriguez M, O'Brien DP. Antiretroviral therapy outcomes in resource-limited settings for HIV-infected children <5 years of age. Pediatrics. 2010;125(5):e1039-1047. Available at
  3. Buck WC, Kabue MM, Kazembe PN, Kline MW. Discontinuation of standard first-line antiretroviral therapy in a cohort of 1434 Malawian children. J Int AIDS Soc. 2010;13:31. Available at
  4. Tukei VJ, Asiimwe A, Maganda A, et al. Safety and tolerability of antiretroviral therapy among HIV-infected children and adolescents in Uganda. J Acquir Immune Defic Syndr. 2012;59(3):274-280. Available at
  5. Palmer M, Chersich M, Moultrie H, Kuhn L, Fairlie L, Meyers T. Frequency of stavudine substitution due to toxicity in children receiving antiretroviral treatment in sub-Saharan Africa. AIDS. 2013;27(5):781-785. Available at
  6. Arpadi S, Shiau S, Strehlau R, et al. Metabolic abnormalities and body composition of HIV-infected children on Lopinavir or Nevirapine-based antiretroviral therapy. Arch Dis Child. 2013;98(4):258-264. Available at
  7. Prendergast AJ. Complications of long-term antiretroviral therapy in HIV-infected children. Arch Dis Child. 2013;98(4):245-246. Available at
  8. Purswani M, Patel K, Kopp JB, et al. Tenofovir treatment duration predicts proteinuria in a multiethnic United States Cohort of children and adolescents with perinatal HIV-1 infection. Pediatr Infect Dis J. 2013;32(5):495-500. Available at
  9. Shubber Z, Calmy A, Andrieux-Meyer I, et al. Adverse events associated with nevirapine and efavirenz-based first-line antiretroviral therapy: a systematic review and meta-analysis. AIDS. 2013;27(9):1403-1412. Available at
  10. Arrow Trial team, Kekitiinwa A, Cook A, et al. Routine versus clinically driven laboratory monitoring and first-line antiretroviral therapy strategies in African children with HIV (ARROW): a 5-year open-label randomised factorial trial. Lancet. 2013;381(9875):1391-1403. Available at
  11. Barlow-Mosha L, Eckard AR, McComsey GA, Musoke PM. Metabolic complications and treatment of perinatally HIV-infected children and adolescents. J Int AIDS Soc. 2013;16:18600. Available at
  12. Cohen S, Smit C, van Rossum AM, et al. Long-term response to combination antiretroviral therapy in HIV-infected children in the Netherlands registered from 1996 to 2012. AIDS. 2013;27(16):2567-2575. Available at
  13. Lubomirov R, Colombo S, di Iulio J, et al. Association of pharmacogenetic markers with premature discontinuation of first-line anti-HIV therapy: an observational cohort study. J Infect Dis. 2011;203(2):246-257. Available at
  14. Bolton C, Samson P, Capparelli E, et al. Strong influence of CYP2B6 genotypic polymorphisms on EFV pharmacokinetics in HIV+ children <3 years of age and implications for dosing. CROI Paper #981. Presented at: Conference on Retrovirueses and Opportunistic Infections. 2012. Seattle, Washington.
  15. Gazzard B, Duvivier C, Zagler C, et al. Phase 2 double-blind, randomized trial of etravirine versus efavirenz in treatment-naive patients: 48-week results. AIDS. 2011;25(18):2249-2258. Available at
  16. Nelson M, Stellbrink HJ, Podzamczer D, et al. A comparison of neuropsychiatric adverse events during 12 weeks of treatment with etravirine and efavirenz in a treatment-naive, HIV-1-infected population. AIDS. 2011;25(3):335-340. Available at
  17. Leutscher PD, Stecher C, Storgaard M, Larsen CS. Discontinuation of efavirenz therapy in HIV patients due to neuropsychiatric adverse effects. Scand J Infect Dis. 2013;45(8):645-651. Available at
  18. Davidson I, Beardsell H, Smith B, et al. The frequency and reasons for antiretroviral switching with specific antiretroviral associations: the SWITCH study. Antiviral Res. 2010;86(2):227-229. Available at
  19. Martinez E, Larrousse M, Llibre JM, et al. Substitution of raltegravir for ritonavir-boosted protease inhibitors in HIV-infected patients: the SPIRAL study. AIDS. 2010;24(11):1697-1707. Available at
  20. McComsey G, Bhumbra N, Ma JF, Rathore M, Alvarez A, First Pediatric Switch S. Impact of protease inhibitor substitution with efavirenz in HIV-infected children: results of the First Pediatric Switch Study. Pediatrics. 2003;111(3):e275-281. Available at
  21. Viergever RF, ten Berg MJ, van Solinge WW, Hoepelman AI, Gisolf EH. Changes in hematological parameters after switching treatment of HIV-infected patients from zidovudine to abacavir or tenofovir DF. HIV Clin Trials. 2009;10(2):125-128. Available at    
  22. Valantin MA, Bittar R, de Truchis P, et al. Switching the nucleoside reverse transcriptase inhibitor backbone to tenofovir disoproxil fumarate + emtricitabine promptly improves triglycerides and low-density lipoprotein cholesterol in dyslipidaemic patients. J Antimicrob Chemother. 2010;65(3):556-561. Available at
  23. Mallolas J, Podzamczer D, Milinkovic A, et al. Efficacy and safety of switching from boosted lopinavir to boosted atazanavir in patients with virological suppression receiving a LPV/r-containing HAART: the ATAZIP study. J Acquir Immune Defic Syndr. 2009;51(1):29-36. Available at
  24. van Luin M, Gras L, Richter C, et al. Efavirenz dose reduction is safe in patients with high plasma concentrations and may prevent efavirenz discontinuations. J Acquir Immune Defic Syndr. 2009;52(2):240-245. Available at
  25. Pretorius E, Klinker H, Rosenkranz B. The role of therapeutic drug monitoring in the management of patients with human immunodeficiency virus infection. Ther Drug Monit. 2011;33(3):265-274. Available at

Back to Top