Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection

The information in the brief version is excerpted directly from the full-text guidelines. The brief version is a compilation of the tables and boxed recommendations.

  •   Table of Contents

Download Guidelines

Management of Medication Toxicity or Intolerance

Lipodystrophy, Lipohypertrophy, Lipoatrophy

Last Updated: April 16, 2019; Last Reviewed: April 16, 2019


See the archived version of Supplement III, February 23, 2009, Pediatric Guidelines on the AIDSinfo website for a more complete discussion and reference list.

General Reviews

  1. Fernandez JR, Redden DT, Pietrobelli A, Allison DB. Waist circumference percentiles in nationally representative samples of African-American, European-American, and Mexican-American children and adolescents. J Pediatr. 2004;145(4):439-444. Available at
  2. Moyle G, Moutschen M, Martinez E, et al. Epidemiology, assessment, and management of excess abdominal fat in persons with HIV infection. AIDS Rev. 2010;12(1):3-14. Available at
  3. Innes S, Cotton MF, Haubrich R, et al. High prevalence of lipoatrophy in pre-pubertal South African children on antiretroviral therapy: a cross-sectional study. BMC Pediatr. 2012;12:183. Available at
  4. Piloya T, Bakeera-Kitaka S, Kekitiinwa A, Kamya MR. Lipodystrophy among HIV-infected children and adolescents on highly active antiretroviral therapy in Uganda: a cross sectional study. J Int AIDS Soc. 2012;15(2):17427. Available at
  5. Prendergast AJ. Complications of long-term antiretroviral therapy in HIV-infected children. Arch Dis Child. 2013;98(4):245-246. Available at
  6. Arbeitman LE, O'Brien RC, Somarriba G, et al. Body mass index and waist circumference of HIV-infected youth in a Miami cohort: comparison to local and national cohorts. J Pediatr Gastroenterol Nutr. 2014;59(4):449-454. Available at
  7. Bwakura-Dangarembizi M, Musiime V, Szubert AJ, et al. Prevalence of lipodystrophy and metabolic abnormalities in HIV-infected African children after 3 years on first-line antiretroviral therapy. Pediatr Infect Dis J. 2015;34(2):e23-31. Available at
  8. Nduka CU, Uthman OA, Kimani PK, Stranges S. Body fat changes in people living with HIV on antiretroviral therapy. AIDS Reviews. 2016;18(4):198-211. Available at
  9. Kenny J, Doerholt K, Gibb DM, Judd A, Collaborative HIVPSSC. Who gets severe gynecomastia among HIV-infected children in the United Kingdom and Ireland? Pediatr Infect Dis J. 2017;36(3):307-310. Available at
  10. Ramteke SM, Shiau S, Foca M, et al. Patterns of growth, body composition, and lipid profiles in a South African cohort of human immunodeficiency virus-infected and uninfected children: A cross-sectional study. J Pediatric Infect Dis Soc. 2017. Available at
  11. Sharma TS, Somarriba G, Arheart KL, et al. Longitudinal changes in body composition by dual energy x-ray absorptiometry among perinatally HIV-infected and HIV-uninfected youth: Increased risk of adiposity among HIV-infected female youth. Pediatr Infect Dis J. 2018;37(10):1002-1007. Available at
  12. de Castro JAC, de Lima RA, Silva DAS. Accuracy of octa-polar bioelectrical impedance analysis for the assessment of total and appendicular body composition in children and adolescents with HIV: comparison with dual energy X-ray absorptiometry and air displacement plethysmography. J Hum Nutr Diet. 2018; 31(2):276-285. Available at

Associated ARVs/Etiology

  1. Haubrich RH, Riddler SA, DiRienzo AG, et al. Metabolic outcomes in a randomized trial of nucleoside, nonnucleoside and protease inhibitor-sparing regimens for initial HIV treatment. AIDS. 2009;23(9):1109-1118. Available at
  2. Hulgan T, Tebas P, Canter JA, et al. Hemochromatosis gene polymorphisms, mitochondrial haplogroups, and peripheral lipoatrophy during antiretroviral therapy. J Infect Dis. 2008;197(6):858-866. Available at
  3.  McComsey GA, Libutti DE, O'Riordan M, et al. Mitochondrial RNA and DNA alterations in HIV lipoatrophy are linked to antiretroviral therapy and not to HIV infection. Antivir Ther. 2008;13(5):715-722. Available at
  4.  Van Dyke RB, Wang L, Williams PL, Pediatric ACTGCT. Toxicities associated with dual nucleoside reverse-transcriptase inhibitor regimens in HIV-infected children. J Infect Dis. 2008;198(11):1599-1608. Available at
  5. Mulligan K, Parker RA, Komarow L, et al. Mixed patterns of changes in central and peripheral fat following initiation of antiretroviral therapy in a randomized trial. J Acquir Immune Defic Syndr. 2006;41(5):590-597. Available at
  6. Scherzer R, Shen W, Bacchetti P, et al. Comparison of dual-energy X-ray absorptiometry and magnetic resonance imaging-measured adipose tissue depots in HIV-infected and control subjects. Am J of Clin Nutr. 2008;88(4):1088-1096. Available at
  7. Benn P, Sauret-Jackson V, Cartledge J, et al. Improvements in cheek volume in lipoatrophic individuals switching away from thymidine nucleoside reverse transcriptase inhibitors. HIV Med. 2009;10(6):351-355. Available at
  8. Arpadi S, Shiau S, Strehlau R, et al. Metabolic abnormalities and body composition of HIV-infected children on Lopinavir or Nevirapine-based antiretroviral therapy. Arch Dis Child. 2013;98(4):258-264. Available at
  9. Foca M, Wang L, Ramteke R, et al. Changes in mitochondrial enzyme function as a predictor of lipodystrophy. Presented at: 7th International AIDS Society. 2015. Vancouver, Canada.
  10. Cohen S, Innes S, Geelen SP, et al. Long-term changes of subcutaneous fat mass in HIV-infected children on antiretroviral therapy: a retrospective analysis of longitudinal data from two pediatric HIV-cohorts. PLoS One. 2015;10(7):e0120927. Available at
  11. Dos Reis LC, de Carvalho Rondo PH, de Sousa Marques HH, Jose Segri N. Anthropometry and body composition of vertically HIV-infected children and adolescents under therapy with and without protease inhibitors. Public Health Nutr. 2015;18(7):1255-1261. Available at
  12. McComsey GA, Moser C, Currier J, et al. Body composition changes after initiation of raltegravir or protease inhibitors: ACTG A5260s. Clin Infect Dis. 2016;62(7):853-862. Available at
  13. Moure R, Domingo P, Gallego-Escuredo JM, et al. Impact of elvitegravir on human adipocytes: Alterations in differentiation, gene expression and release of adipokines and cytokines. Antiviral Res. 2016;132:59-65. Available at
  14. Group BT. Weekends-off efavirenz-based antiretroviral therapy in HIV-infected children, adolescents, and young adults (BREATHER): a randomised, open-label, non-inferiority, Phase 2/3 trial. Lancet HIV. 2016;3(9):e421-e430. Available at
  15. Innes S, Harvey J, Collins IJ, et al. Lipoatrophy/lipohypertrophy outcomes after antiretroviral therapy switch in children in the UK/Ireland. PLoS One. 2018;13(4):e0194132. Available at:


  1. Falutz J, Allas S, Blot K, et al. Metabolic effects of a growth hormone-releasing factor in patients with HIV. N Engl J Med. 2007;357(23):2359-2370. Available at
  2. Hadigan C. Peroxisome proliferator-activated receptor gamma agonists and the treatment of HIV-associated lipoatrophy: unraveling the molecular mechanism of their shortcomings. J Infect Dis. 2008;198(12):1729-1731. Available at
  3. Lindegaard B, Hansen T, Hvid T, et al. The effect of strength and endurance training on insulin sensitivity and fat distribution in human immunodeficiency virus-infected patients with lipodystrophy. J Clin Endocrinol Metab. 2008;93(10):3860-3869. Available at
  4. Lo J, You SM, Canavan B, et al. Low-dose physiological growth hormone in patients with HIV and abdominal fat accumulation: a randomized controlled trial. JAMA. 2008;300(5):509-519. Available at
  5. Tebas P, Zhang J, Hafner R, et al. Peripheral and visceral fat changes following a treatment switch to a non-thymidine analogue or a nucleoside-sparing regimen in HIV-infected subjects with peripheral lipoatrophy: results of ACTG A5110. J Antimicrob Chemother. 2009;63(5):998-1005. Available at
  6. Falutz J, Mamputu JC, Potvin D, et al. Effects of tesamorelin (TH9507), a growth hormone-releasing factor analog, in human immunodeficiency virus-infected patients with excess abdominal fat: a pooled analysis of two multicenter, double-blind placebo-controlled phase 3 trials with safety extension data. J Clin Endocrinol Metab. 2010;95(9):4291-4304. Available at
  7. Ferrer E, del Rio L, Martinez E, et al. Impact of switching from lopinavir/ritonavir to atazanavir/ritonavir on body fat redistribution in virologically suppressed HIV-infected adults. AIDS Res Hum Retroviruses. 2011;27(10):1061-1065. Available at
  8. Innes S, Harvey J, Collins I, Cotton M, Judd A. Lipoatrophy/lipohypertrophy outcomes after ART switch in children in UK/Ireland. 22nd Conference on Retroviruses and Opportunistic Infections. 2016. Boston, MA.
  9. Negredo E, Miro O, Rodriguez-Santiago B, et al. Improvement of mitochondrial toxicity in patients receiving a nucleoside reverse-transcriptase inhibitor-sparing strategy: results from the Multicenter Study with Nevirapine and Kaletra (MULTINEKA). Clin Infect Dis. 2009;49(6):892-900. Available at
  10. Raboud JM, Diong C, Carr A, et al. A meta-analysis of six placebo-controlled trials of thiazolidinedione therapy for HIV lipoatrophy. HIV Clin Trials. 2010;11(1):39-50. Available at
  11. Sheth SH, Larson RJ. The efficacy and safety of insulin-sensitizing drugs in HIV-associated lipodystrophy syndrome: a meta-analysis of randomized trials. BMC Infect Dis. 2010;10:183. Available at
  12. Tungsiripat M, Bejjani DE, Rizk N, et al. Rosiglitazone improves lipoatrophy in patients receiving thymidine-sparing regimens. AIDS. 2010;24(9):1291-1298. Available at
  13. Spoulou V, Kanaka-Gantenbein C, Bathrellou I, et al. Monitoring of lipodystrophic and metabolic abnormalities in HIV-1 infected children on antiretroviral therapy. Hormones. 2011;10(2):149-155. Available at
  14. Minami R, Yamamoto M, Takahama S, Ando H, Miyamura T, Suematsu E. Comparison of the influence of four classes of HIV antiretrovirals on adipogenic differentiation: the minimal effect of raltegravir and atazanavir. J Infect Chemother. 2011;17(2):183-188. Available at
  15. Young L, Wohl DA, Hyslop WB, Lee YZ, Napravnik S, Wilkin A. Effects of raltegravir combined with tenofovir/emtricitabine on body shape, bone density, and lipids in African-Americans initiating HIV therapy. HIV Clin Trials. 2015;16(5):163-169. Available at

Download Guidelines