skip navigation

Skip Nav

Clinical Guidelines Portal

Clinical Guidelines Portal

Table of Contents

Recommendations for Use of Antiretroviral Drugs in Pregnant HIV-1-Infected Women for Maternal Health and Interventions to Reduce Perinatal HIV Transmission in the United States

Antepartum Care

Lack of Viral Suppression

(Last updated: August 6, 2015; last reviewed: August 6, 2015)

Panel's Recommendations

Panel's Recommendations

  • Because maternal antenatal viral load correlates with risk of perinatal transmission of HIV, suppression of HIV RNA to undetectable levels should be achieved as rapidly as possible (AII).
  • If an ultrasensitive HIV RNA assay indicates failure of viral suppression (after an adequate period of treatment):
  • Assess adherence and resistance (if HIV RNA level is high enough for resistance testing) (AII).
  • Consult an HIV treatment expert and consider possible antiretroviral regimen modification (AIII).
  • Scheduled cesarean delivery is recommended for HIV-infected pregnant women who have HIV RNA levels >1,000 copies/mL near the time of delivery (AII).
Rating of Recommendations: A = Strong; B = Moderate; C = Optional
Rating of Evidence: I = One or more randomized trials with clinical outcomes and/or validated laboratory endpoints; II = One or more well-designed, nonrandomized trials or observational cohort studies with long-term clinical outcomes; III = Expert opinion

Virologic suppression is defined as a confirmed HIV RNA level below the lower limits of detection of an ultrasensitive assay, and virologic failure is the inability to achieve or maintain an HIV RNA level <200 copies/mL.  

The lack of virologic suppression by late pregnancy may indicate virologic failure but may also represent inadequate time on therapy. Baseline HIV RNA levels have been shown to affect the time to response in both pregnant and non-pregnant individuals, with no difference in response between pregnant and non-pregnant women.1,2 HIV RNA levels should be assessed 2 to 4 weeks after an antiretroviral (ARV) drug regimen is initiated or changed to provide an initial assessment of effectiveness.3 Most patients with an adequate viral response at 24 weeks of treatment have had at least a 1 log copies/mL HIV RNA decrease within 1 to 4 weeks after starting therapy.3 In a retrospective multicenter cohort of 378 pregnant women, 77.2% achieved HIV RNA <50 copies/mL by delivery, with success of viral suppression varying by baseline HIV RNA level. With baseline <10,000 copies/mL, gestational age at initiation did not affect success up to 26.3 weeks. With baseline >10,000 copies/mL, however, delaying initiation past 20.4 weeks significantly reduced the ability to achieve maximal suppression at delivery.1 In data on 1,070 HIV-infected treatment-naive pregnant women participating in IMPAACT P1025, a prospective cohort study, initiation of combination antiretroviral therapy (cART) at >32 weeks’ gestation was also associated with a significantly higher risk of having viral load >400 copies/mL at delivery.4 Because maternal antenatal HIV RNA level correlates with risk of perinatal transmission of HIV, suppression of HIV RNA to undetectable levels should be achieved as rapidly as possible.  

A three-pronged approach is indicated for management of women on ARV regimens who have suboptimal suppression of HIV RNA, taking into account time on treatment. They should be:  

  • Evaluated for resistant virus (if plasma HIV RNA is above the threshold for resistance testing, generally >500 or >1,000 copies/mL); 
  • Assessed for adherence, tolerability, incorrect dosing, or potential problems with absorption (e.g., nausea/vomiting, lack of attention to food requirements); and
  • Considered for ARV regimen modification.

The role of therapeutic drug monitoring in reducing the risk of virologic failure is still undefined.5,6

Experts in the care of ARV-experienced adults should be consulted, particularly if a change in drug regimen is necessary. Hospitalization can be considered for directly observed drug administration, adherence education, and treatment of comorbidities such as nausea and vomiting.7

Among 662 pregnancies followed in Italy between 2001 and 2008, treatment modification during pregnancy was independently associated with an HIV-1 RNA level >400 copies/mL in late pregnancy (adjusted odds ratio, 1.66; 95% confidence interval, 1.07–2.57; P = 0.024), highlighting the importance of using potent and well-tolerated regimens during pregnancy to maximize effectiveness and minimize the need to modify treatment.8

A recent systematic review and meta-analysis of adherence to cART during and after pregnancy in low-, middle-, and high-income countries (27% of studies were from the United States) found that a pooled estimate of 63.5% of pregnant women on cART had adequate (>80%) adherence to cART.9 Evaluation of and support for adherence during pregnancy is critical to achievement and maintenance of maximal viral suppression.

The addition of raltegravir in late pregnancy has been suggested for women who have high viral loads and/or in whom multiple drug-resistant mutations have resulted in incomplete suppression of viremia because of the ability of raltegravir to rapidly suppress viral load (approximately 2 log copies/mL decrease by Week 2 of therapy).10-13 However, the efficacy and safety of this approach have not been evaluated, and only anecdotal reports are available. In the setting of a failing regimen related to non-adherence and/or resistance, there are concerns that the addition of a single agent may further increase risk of resistance and potential loss of future effectiveness with raltegravir. A recent report found a 10- to 23-fold increase in transaminase levels following introduction of a raltegravir-containing regimen in late pregnancy, with return to normal levels after raltegravir discontinuation.14 At the current time, this approach cannot be routinely recommended. 

Scheduled cesarean delivery is recommended for HIV-infected pregnant women who have HIV RNA levels >1,000 copies/mL.15,16

References 

  1. Read PJ, Mandalia S, Khan P, et al. When should HAART be initiated in pregnancy to achieve an undetectable HIV viral load by delivery? AIDS. 2012;26(9):1095-1103. Available at http://www.ncbi.nlm.nih.gov/pubmed/22441248.
  2. Rachas A, Warszawski J, Le Chenadec J, et al. Does pregnancy affect the early response to cART? AIDS. 2013;27(3):357-367. Available at http://www.ncbi.nlm.nih.gov/pubmed/23079802.
  3. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. 2014. Available at http://aidsinfo.nih.gov/contentfiles/AdultandAdolescentGL.pdf. Accessed May 5, 2015.
  4. Katz I, Leister E, et al. Factors associated with lack of viral suppression at deliver: IMPAACT P1025. Paper #1022. Presented at: 19th Conference on Retroviruses and Opportunistic Infections. 2012.
  5. Liu X, Ma Q, Zhang F. Therapeutic drug monitoring in highly active antiretroviral therapy. Expert Opin Drug Saf. 2010;9(5):743-758. Available at http://www.ncbi.nlm.nih.gov/pubmed/20350281.
  6. Matsui DM. Therapeutic drug monitoring in pregnancy. Ther Drug Monit. 2012;34(5):507-511. Available at http://www.ncbi.nlm.nih.gov/pubmed/22846897.
  7. McCabe CJ, Goldie SJ, Fisman DN. The cost-effectiveness of directly observed highly-active antiretroviral therapy in the third trimester in HIV-infected pregnant women. PLoS One. 2010;5(4):e10154. Available at http://www.ncbi.nlm.nih.gov/pubmed/20405011.
  8. Floridia M, Ravizza M, Pinnetti C, et al. Treatment change in pregnancy is a significant risk factor for detectable HIV-1 RNA in plasma at end of pregnancy. HIV Clin Trials. 2010;11(6):303-311. Available at http://www.ncbi.nlm.nih.gov/pubmed/21239358.
  9. Nachega JB, Uthman OA, Anderson J, et al. Adherence to antiretroviral therapy during and after pregnancy in low-income, middle-income, and high-income countries: a systematic review and meta-analysis. AIDS. 2012;26(16):2039-2052. Available at http://www.ncbi.nlm.nih.gov/pubmed/22951634.
  10. Grinsztejn B, Nguyen BY, Katlama C, et al. Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: a phase II randomised controlled trial. Lancet. 2007;369(9569):1261-1269. Available at http://www.ncbi.nlm.nih.gov/pubmed/17434401.
  11. Papendorp SG, van den Berk GE. Preoperative use of raltegravir-containing regimen as induction therapy: very rapid decline of HIV-1 viral load. AIDS. 2009;23(6):739. Available at http://www.ncbi.nlm.nih.gov/pubmed/19279447.
  12. Pinnetti C, Baroncelli S, Villani P, et al. Rapid HIV-RNA decline following addition of raltegravir and tenofovir to ongoing highly active antiretroviral therapy in a woman presenting with high-level HIV viraemia at week 38 of pregnancy. J Antimicrob Chemother. 2010;65(9):2050-2052. Available at http://www.ncbi.nlm.nih.gov/pubmed/20630894.
  13. McKeown DA, Rosenvinge M, Donaghy S, et al. High neonatal concentrations of raltegravir following transplacental transfer in HIV-1 positive pregnant women. AIDS. 2010;24(15):2416-2418. Available at http://www.ncbi.nlm.nih.gov/pubmed/20827058.
  14. Renet S, Closon A, Brochet MS, Bussieres JF, Boucher M. Increase in transaminase levels following the use of raltegravir in a woman with a high HIV viral load at 35 weeks of pregnancy. J Obstet Gynaecol Can. 2013;35(1):68-72. Available at http://www.ncbi.nlm.nih.gov/pubmed/23343800.
  15. The mode of delivery and the risk of vertical transmission of human immunodeficiency virus type 1--a meta-analysis of 15 prospective cohort studies. The International Perinatal HIV Group. N Engl J Med. 1999;340(13):977-987. Available at http://www.ncbi.nlm.nih.gov/pubmed/10099139.
  16. European Mode of Delivery C. Elective caesarean-section versus vaginal delivery in prevention of vertical HIV-1 transmission: a randomised clinical trial. Lancet. 1999;353(9158):1035-1039. Available at http://www.ncbi.nlm.nih.gov/pubmed/10199349.
     

Back to Top